1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
14

A square has vertices T(1,2), U(4,2), V(4,5), W(1,5). If the square is rotated clockwise 90 degrees around (0,0), what are the c

oordinates of W?

Mathematics
1 answer:
erastovalidia [21]3 years ago
6 0
<span>(5,-1) The key to this problem is ignoring all the information that you don't need. You really don't care about the coordinates for T, U, or V. Just W is all that matters. So make a graph, label the X and Y axis, and put a point at (1,5). Now simply turn the entire paper clockwise 90 degrees. If you do this, you'll see that what was the X axis is now the Y axis. And what was the Y axis is now the X axis. Label the axis again, and read the location of the point you marked. If you do so, you'll see that you have to go 5 spaces along the X axis, hence the 5. And you'll go 1 space down on the Y axis, hence the -1. So the coordinates of W(1,5) rotated 90 degrees clockwise around (0,0) changes to (5,-1).</span>
You might be interested in
2x - 1 = 0 is a quadratic equation. <br> True False
harina [27]
I believe the answer is false

Hope this helps
6 0
3 years ago
Read 2 more answers
What decimal is equivalent to 85%
mojhsa [17]

Answer:

0.85

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
F(x)=x^4-5x^2-6x-10 is divided by x-3
LiRa [457]

Answer:

Step-by-step explanation:

STEP

1

:

           10

Simplify   ——

           x

Equation at the end of step

1

:

                       10

 ((((x4)-(5•(x2)))-6x)-——)-3

                       x

STEP

2

:

Equation at the end of step

2

:

                           10    

 ((((x4) -  5x2) -  6x) -  ——) -  3

                           x      

STEP

3

:

Rewriting the whole as an Equivalent Fraction

3.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  x  as the denominator :

                     x4 - 5x2 - 6x     (x4 - 5x2 - 6x) • x

    x4 - 5x2 - 6x =  —————————————  =  ———————————————————

                           1                    x        

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

4

:

Pulling out like terms

4.1     Pull out like factors :

  x4 - 5x2 - 6x  =   x • (x3 - 5x - 6)

Polynomial Roots Calculator :

4.2    Find roots (zeroes) of :       F(x) = x3 - 5x - 6

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -2.00    

     -2       1        -2.00        -4.00    

     -3       1        -3.00        -18.00    

     -6       1        -6.00        -192.00    

     1       1        1.00        -10.00    

     2       1        2.00        -8.00    

     3       1        3.00        6.00    

     6       1        6.00        180.00    

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

4.3       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • (x3-5x-6) • x - (10)     x5 - 5x3 - 6x2 - 10

————————————————————————  =  ———————————————————

           x                          x        

Equation at the end of step

4

:

 (x5 - 5x3 - 6x2 - 10)    

 ————————————————————— -  3

           x              

STEP

5

:

Rewriting the whole as an Equivalent Fraction

5.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x  as the denominator :

        3     3 • x

   3 =  —  =  —————

        1       x  

Checking for a perfect cube :

5.2    x5 - 5x3 - 6x2 - 10  is not a perfect cube

Trying to factor by pulling out :

5.3      Factoring:  x5 - 5x3 - 6x2 - 10

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -6x2 - 10

Group 2:  x5 - 5x3

Pull out from each group separately :

Group 1:   (3x2 + 5) • (-2)

Group 2:   (x2 - 5) • (x3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

5.4    Find roots (zeroes) of :       F(x) = x5 - 5x3 - 6x2 - 10

    See theory in step 4.2

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -10.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,5 ,10

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -12.00    

     -2       1        -2.00        -26.00    

     -5       1        -5.00       -2660.00    

     -10       1       -10.00       -95610.00    

     1       1        1.00        -20.00    

     2       1        2.00        -42.00    

     5       1        5.00        2340.00    

     10       1        10.00       94390.00    

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

5.5       Adding up the two equivalent fractions

(x5-5x3-6x2-10) - (3 • x)      x5 - 5x3 - 6x2 - 3x - 10

—————————————————————————  =  ————————————————————————

            x                            x            

Polynomial Roots Calculator :

5.6    Find roots (zeroes) of :       F(x) = x5 - 5x3 - 6x2 - 3x - 10

    See theory in step 4.2

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -10.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,5 ,10

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -9.00    

     -2       1        -2.00        -20.00    

     -5       1        -5.00       -2645.00    

     -10       1       -10.00       -95580.00    

     1       1        1.00        -23.00    

     2       1        2.00        -48.00    

     5       1        5.00        2325.00    

     10       1        10.00       94360.00    

Polynomial Roots Calculator found no rational roots

Final result :

 x5 - 5x3 - 6x2 - 3x - 10

 ————————————————————————

            x            

3 0
3 years ago
What is the location of the point (5, 0) translates 4 units to the down and reflected across the y-axis?
CaHeK987 [17]

STEP-BY-STEP EXPLANATION:

Given information

The given ordered point = (5, 0)

Step 1: We need to translate the point 4 units down

To translate down means we will be subtracting a value from the y--axis

Hence, we have

\begin{gathered} (x,\text{ y) }\rightarrow\text{ (x, y-b)} \\ \text{where b = 4} \\ (5,\text{ 0) }\rightarrow\text{ (5, 0 - 4)} \\ (5,\text{ 0) }\rightarrow\text{ (5, -4)} \end{gathered}

When translated 4 units down, we got (5, -4)

Step 2: Reflect over the y-axis

The general rule for reflecting over the y-axis is (-x, y)

This means the value of x will be negated and the value of y will remain the same

\begin{gathered} \text{Over the y-ax}is \\ (x,\text{ y) }\rightarrow\text{ (-x, y)} \\ (5,\text{ -4) }\rightarrow\text{ (-5, -4)} \end{gathered}

Step 3: the graph the point

4 0
1 year ago
You are taking a quiz that has 9 multiple-choice questions. If each question has 4 possible answers, how many different ways are
11111nata11111 [884]

Answer:

9 questions x 4 answers per question

9x4= 36

6 0
3 years ago
Read 2 more answers
Other questions:
  • Find the equation of the circle that has a diameter with endpoints located at (-3,6) and (9,6)
    8·1 answer
  • Do you guys know how to remember certain measurements?
    14·1 answer
  • Kristin bought eight boxes.A week later half of all her boxes were destroyed in a fire.There are now only 17 boxes left.With how
    6·1 answer
  • If an equation is a direct variation, then there is always something added or subtracted from the x term
    11·1 answer
  • What is the area of this irregular figure<br><br> O 54 cm?<br> O 72 cm?<br> O 216 cm?<br> 432 cm?
    5·2 answers
  • Share £24 in the ratio of 3:1
    10·2 answers
  • Help!
    11·1 answer
  • Describe one exercise you did that helps improve your striking and your reaction time skills (at least one of your exercises mus
    9·2 answers
  • The coordinates of the vertices of the preimage of a triangle are (2, 1), (3, 4), and (4, 1). The coordinates of the vertices of
    11·1 answer
  • Sam had 3/4 gallon of paint and used only 1/2 of that for a project. How
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!