Answer:
9000000+20000+20+9
Step-by-step explanation:
<u>Answer: </u>
sec squared 55 – tan squared 55 = 1
<u>Explanation:</u>
Given, sec square 55 – tan squared 55
We know that,

And,

where Ө is the angle
Substituting the values

Solving,

According to Pythagoras theorem,

Putting this in the equation;
squared 55 - tan squared 55 =

Therefore, sec squared 55 – tan squared 55 = 1
Answer:

Step-by-step explanation:
Distance Formula: 
Step 1: Define endpoint coordinates
(2, 5)
(-6, -1)
Step 2: Substitute and Evaluate





Answer:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
To add two matrices you just need to add the corresponding entries together. In this case, we have that:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right]=\left[\begin{array}{ccc}4-8&19+7&-5 + 0\\7-1&0+17&-14+6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-8%2619%2B7%26-5%20%2B%200%5C%5C7-1%260%2B17%26-14%2B6%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Then, we conclude that the sume of the two matrices is:
![\left[\begin{array}{ccc}4&19&-5\\7&0&-14\end{array}\right] + \left[\begin{array}{ccc}-8&7&0\\-1&17&6\end{array}\right] = \left[\begin{array}{ccc}-4&26&-5\\6&17&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%2619%26-5%5C%5C7%260%26-14%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-8%267%260%5C%5C-1%2617%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%2626%26-5%5C%5C6%2617%26-8%5Cend%7Barray%7D%5Cright%5D)
Answer:X=6
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
8x−2x−16=20
8x+−2x+−16=20
(8x+−2x)+(−16)=20(Combine Like Terms)
6x+−16=20
6x−16=20
Step 2: Add 16 to both sides.
6x−16+16=20+16
6x=36
Step 3: Divide both sides by 6.
6x
6
=
36
6
x=6