Answer: it becomes a positive ion
Explanation:
So, when an atom loses 2 electrons there will be no change in the number of neutrons. Therefore, an isotope will not form. Thus, it is concluded that when an atom with no charge loses two electrons, it becomes a positive ion.
Answer: 2.86 m
Explanation:
To solve this question, we will use the law of conservation of kinetic and potential energy, which is given by the equation,
ΔPE(i) + ΔKE(i) = ΔPE(f) + ΔKE(f)
In this question, it is safe to say there is no kinetic energy in the initial state, and neither is there potential energy in the end, so we have
mgh + 0 = 0 + KE(f)
To calculate the final kinetic energy, we must consider the energy contributed by the Inertia, so that we then have
mgh = 1/2mv² + 1/2Iw²
To get the inertia of the bodies, we use the formula
I = [m(R1² + R2²) / 2]
I = [2(0.2² + 0.1²) / 2]
I = 0.04 + 0.01
I = 0.05 kgm²
Also, the angular velocity is given by
w = v / R2
w = 4 / (1/5)
w = 20 rad/s
If we then substitute these values in the equation we have,
0.5 * 9.8 * h = (1/2 * 0.5 * 4²) + (1/2 * 0.05 * 20²)
4.9h = 4 + 10
4.9h = 14
h = 14 / 4.9
h = 2.86 m
Answer:
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: Dry friction is a force that opposes the relative lateral motion of two solid surfaces in contact.
Coefficient of friction, ratio of the frictional force resisting the motion of two surfaces in contact to the normal force pressing the two surfaces together. It is usually symbolized by the Greek letter mu (μ). Mathematically, μ = F/N, where F is the frictional force and N is the normal force.
The force between two celestial bodies is a Newtonian gravitational force.
It is also called Newton's law of universal gravitation. We can write it down mathematically in the following way:

We can see from this formula that gravitational force is <span>inversely proportional to the square of the distance between bodies.
The electrostatic force between two charges is Coulombs force. We can write it down like this:
</span>

This force is also inversely proportional to the square of the distance between interacting particles.
The nuclear force is a little bit more complicated. It can be expressed using the so-called Yukawa potential, which has the following form:

This interaction does not follow the inverse-square law.
The final answer should be 8.
Answer:
<em>The motorboat ends up 7.41 meters to the west of the initial position
</em>
Explanation:
<u>Accelerated Motion
</u>
The accelerated motion describes a situation where an object changes its velocity over time. If the acceleration is constant, then these formulas apply:


The problem provides the conditions of the motorboat's motion. The initial velocity is 6.5 m/s west. The final velocity is 1.5 m/s west, and the acceleration is
to the east. Since all the movement takes place in one dimension, we can ignore the vectorial notation and work with the signs of the variables, according to a defined positive direction. We'll follow the rule that all the directional magnitudes are positive to the east and negative to the west. Rewriting the formulas:


Solving the first one for t

We have

Using these values

We now compute x


The motorboat ends up 7.41 meters to the west of the initial position