Answer:
Explanation:
Step one:
given data
initial velocity u= 40m/s
time taken t=3seconds
final velocity v=?
Step two:
applying the first equation of motion
v=u-gt--- (the -ve sign implies that the arrow is against gravity)
assume g=9.81m/s^2
v=40-9.81*3
v=40-29.43
v=10.57m/s
Step three:
how high the target is located
applying
s=ut-1/2gt^2
s=40*3-1/2(9.81)*3^2
s=120-88.29/2
s=120-44.145
s=75.86m
Answer:
45°.
It is a property of the parabolas.. When the angle between a parabola and the x-axis is 45° the range is maximum.
Answer:
I think it's carbohydrates
Explanation:
The energy from light causes a chemical reaction that breaks down the molecules of carbon dioxide and water and reorganizes them to make the sugar (glucose) and oxygen gas.
Let say the two train cars are of masses
and 
now if the speed of two cars are
and 
then we can say that the momentum of two cars before they collide is given by

here two cars are moving in opposite direction so we can say that the net momentum is subtraction of two cars momentum.
Now since in these two car motion there is no external force on them while they collide
So the momentum of two cars are always conserved.
hence we can say that the final momentum of two cars will be same after collision as it is before collision

Answer:
Required mass of sand is 20 kg
Explanation:
Given:
Mass of the plank = 25 kg
Distance of the Center of gravity of the Plank from the fulcrum = 
Distance of the Center of gravity of the sand box from the fulcrum =
Balancing the torque due to the plank and the sand box with respect to the fulcrum
Torque = Force × perpendicular distance
thus, we get
(25 × g) × 0.5 = weight of sand × 0.625
where, g is the acceleration due to gravity
or
(25 × g) × 0.5 = (mass of sand × g) × 0.625
or
mass of sand = 20 kg
<u>Hence, the required mass of the sand is </u><u>20 kg</u>