Answer:
A compound contains atoms of different elements chemically combined together in a fixed ratio. An element is a pure chemical substance made of same type of atom. ... Elements contain only one type of atom.
Explanation:
Answer:
B
Explanation:
An exothermic reaction is one in which heat is liberated to the surrounding by a reaction.In this case,the enthalpy of the product is less than that of the reactant and such a reaction has a negative enthalpy (ΔH).
Answer:
7. ok
please mark me brainlistb
Answer:
The specific heat of zinc is 0.361 J/g°C
Explanation:
<u>Step 1:</u> Data given
44.0 J needed
Mass of solid zinc = 10.6 grams
Initial temperature = 24.9 °C
Final temperature = 36.4 °C
<u>Step 2</u>: Calculate the specific heat of zinc
Q = m*c*ΔT
⇒ with Q = heat (in Joule) = 44.0 J
⇒ with m = the mass of the solid zinc = 10.6 grams
⇒ with c = the specific heat of the zinc = TO BE DETERMINED
⇒ with ΔT = The change in temperature = T2-T1 = 36.4 °C - 24.9 °C = 11.5 °C
44.0 J = 10.6 grams * c * 11.5°C
c = 44.0 J / (10.6g * 11.5 °C)
c = 0.361 J/g°C
The specific heat of zinc is 0.361 J/g°C
Ans: As changes in energy levels of electrons increase, the frequencies of atomic line spectra they emit will <u>increase.</u>
The energy (E) is related to the frequency (ν) by the following equation:
E = hν
where h = planck's constant
The change in energy i between levels is:
ΔΕ = h(Δν) -----(1)
Based on the above equation, as the changes in energy levels increase, the frequency of emitted radiation will also increase.