1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
3 years ago
14

1. The point (–1, 13) is on the terminal side of an angle in standard position. Use this

Mathematics
1 answer:
Masja [62]3 years ago
4 0
Uh i think it’s uhh.... i think it’s a carrot
You might be interested in
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
C. Find the value of x. Round to the nearest<br> tenth.
Otrada [13]
Label your sides= hypotenuse(h),opposite(o),adjacent(a)
hypotenuse=longest(opposite the right angle)
opposite= opposite the other angle
adjacent= the other side
see which sides are involved
in this case it is adjacent and hypotenuse
so A and H
we have to use the SOHCAHTOA rule
Sin=o/h Cos=a/h Tan=o/a
we use cos because a and h are involved
Cos(15°)=62/x
rearrange the equation to find x
x= 62/cos(15)
put this in your calculator
x= 64.12
6 0
3 years ago
Mr. Allway’s math class surveyed all the seventh-grade students to find out their favorite sport. The following circle graph sho
JulijaS [17]

Answer:

101 is the answer of the question

3 0
3 years ago
Read 2 more answers
Factor -12x^6-60x^5-75x^4
lesya [120]
-12x^6 - 60x^5-75x^4.......GCF = 3x^4
 3x^4(-4x^2 - 20x - 25)
3x^4(-2x - 5)(2x + 5) <==
6 0
3 years ago
PLS HELP ME IMMA CRY ONGG GGHGHJH
WITCHER [35]

Answer:

127

Step-by-step explanation:

We started at 7

We keep going up 3

multiply

3\cdot40=120 Now add 120+7=127 at the 40th term

8 0
3 years ago
Read 2 more answers
Other questions:
  • The value of y varies directly with x, and y = 3 when x = 1.<br><br> Find y when x = −5.
    7·1 answer
  • If there are 36 performers in a dance recital. The ratio of men to women is 2:7. How many men are in the dance recital ?
    8·1 answer
  • Four is no less than the quotient of a number x and 2.1.
    11·1 answer
  • In which order should you look for assistance with college expenses?
    9·1 answer
  • . The asset requires a capital investment of ​$100 comma 000100,000​, and MARR is 1212​% per year. Use Monte Carlo simulation an
    13·1 answer
  • What’s the answer to <br><br> 250 = 4(1 - 7x)
    11·1 answer
  • There are 7 times as many females as
    13·1 answer
  • Solve: 0 <img src="https://tex.z-dn.net/?f=%5Cleq" id="TexFormula1" title="\leq" alt="\leq" align="absmiddle" class="latex-formu
    6·1 answer
  • You’re help Is greatly appreciated!! I will mark BRAINLIEST as well
    15·1 answer
  • Need help with this please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!