1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
7

What is the surface area of this wedge

Mathematics
1 answer:
KatRina [158]3 years ago
4 0

Answer:

84 ft

Step-by-step explanation:

triangle= 1/2bh

rectangle or square = bh

so 1/2(4)3=6

6 times 3= 18

1/2(4)3= 6

4 times 6 = 24

5 times 6 = 30

now you add them all up

6 + 18 + 6+ 24+ 30 =

You might be interested in
Help please will mark brainliest!!!
Daniel [21]

Answer:

45°

Step-by-step explanation:

Well, compared to 90°, it looks like it's just smaller, but not too small. It couldn't be 15° degrees, or 60°, as it was probably too much. I Don't think it's 30° either,  because it looked bigger than what a 30° angle would be.

Hope it helped!

~Flip

7 0
2 years ago
1. What is the range? Write your answer like #<br> Helppppppp
Korolek [52]
I don’t know sorry but like how’s yoonbum doing? Also like wanna be friends?
4 0
2 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
How do I solve 24(x-1) = -6(4-x)+18
podryga [215]

<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>.</em>

<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>

<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>

<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>

<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>

8 0
2 years ago
Read 2 more answers
A number line going from negative 4 to positive 4. What is the distance between 0 and –2? Use the number line to answer the ques
Nana76 [90]

Answer:

I wish <em>i could help </em>

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Plz answer..... fill in the missing angles
    10·2 answers
  • What kind of numbers are in the descending pattern?
    14·1 answer
  • 7x+17=7x-17 is this an identity, conditional or inconsistent equation
    11·1 answer
  • Simplify 3 squared times 21 squared
    8·1 answer
  • Which is not an equation of the line that passes through the points (1, 1) and (5, 5)?
    7·1 answer
  • Can someone help me solving this problem? I'm confuse so I want help..
    12·1 answer
  • 12 + z = 15<br><br> Does anyone know thisplease
    13·1 answer
  • Ten full crates of walnuts weigh 370 pounds, whereas an empty crate weighs 10 pounds. How much do the walnuts alone weigh?
    6·1 answer
  • The question is in the attached file
    13·2 answers
  • PLEASE HELP ILL GIVE BRAINLIEST PLEASE PLEASE PLEEEEEEEAAAAASE
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!