1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aivan3 [116]
3 years ago
8

Light travels about 186,000 mi/s . The function d(t) = 186,000t gives the distance d(t) in miles, that light travels in t second

s. How far does light travel in 32s ?
Mathematics
1 answer:
professor190 [17]3 years ago
3 0
D(t) = 186,000t.....t represents the number of seconds....so in 32 seconds...t = 32

d(32) = 186,000(32)
d(32) = 5,952,000 miles <==
You might be interested in
Four times the reciprocal of a number equal 2 times the reciprocal of 8
garik1379 [7]

Answer:

Step-by-step explanation:

Let the number be y & reciprocal simply means inverse of the number

4×1/y=2×1/8 solving for y

4/y=2/8; y = 16

5 0
3 years ago
Let P and Q be polynomials with positive coefficients. Consider the limit below. lim x→[infinity] P(x) Q(x) (a) Find the limit i
jenyasd209 [6]

Answer:

If the limit that you want to find is \lim_{x\to \infty}\dfrac{P(x)}{Q(x)} then you can use the following proof.

Step-by-step explanation:

Let P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} and Q(x)=b_{m}x^{m}+b_{m-1}x^{n-1}+\cdots+b_{1}x+b_{0} be the given polinomials. Then

\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}

Observe that

\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}

and

\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, nm\end{cases}

Then

\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, nm \end{cases}

3 0
3 years ago
How to find matrics M
makkiz [27]

\left[\begin{array}{ccc}9&7\\-4&2\end{array}\right] -4M=\left[\begin{array}{ccc}-3&3\\4&-18\end{array}\right]\qquad(*) \\\\M=\left[\begin{array}{ccc}a&b\\c&d\end{array}\right]\to4M=\left[\begin{array}{ccc}4a&4b\\4c&4d\end{array}\right]

(*)\qquad\left[\begin{array}{ccc}9&7\\-4&2\end{array}\right] -\left[\begin{array}{ccc}4a&4b\\4c&4d\end{array}\right]=\left[\begin{array}{ccc}-3&3\\4&-18\end{array}\right]\\\\\left[\begin{array}{ccc}9-4a&7-4b\\-4-4c&2-4d\end{array}\right]=\left[\begin{array}{ccc}-3&3\\4&-18\end{array}\right]\\.\qquad\qquad\qquad\qquad\ \ \ \Downarrow\\(_{11})\qquad9-4a=-3\ \ \ |-9\\-4a=-12\ \ \ \ |:(-4)\\a=3\\\\(_{12})\qquad7-4b=3\ \ \ \ |-7\\-4b=-4\ \ \ \ |:(-4)\\b=1

(_{21})\qquad-4-4c=4\ \ \ \ |+4\\-4c=8\ \ \ \ |:(-4)\\c=-2\\\\(_{22})\qquad2-4d=-18\ \ \ \ |-2\\-4d=-20\ \ \ \ \ |:(-4)\\d=5\\\\Answer:\ A.\ M=\left[\begin{array}{ccc}3&1\\-2&5\end{array}\right]

3 0
3 years ago
How do you change 15/4 into a decimal
Tomtit [17]

Answer:3.75

Step-by-step explanation:

just divide

6 0
3 years ago
Read 2 more answers
The slope-intercept form of the equation of a line that passes through point (-3, 8) is y = -2/3x + 6. What is the point-
Elena-2011 [213]

y = \stackrel{\stackrel{m}{\downarrow }}{-\cfrac{2}{3}}x+6\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

so hmmm then we know the slope of that line is -2/3, so we're really looking for the point-slope form of a line with a slope of -2/3 and that passes through (-3 , 8)

(\stackrel{x_1}{-3}~,~\stackrel{y_1}{8})\hspace{10em} \stackrel{slope}{m} ~=~ -\cfrac{2}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{8}=\stackrel{m}{-\cfrac{2}{3}}(x-\stackrel{x_1}{(-3)})\implies y-8=-\cfrac{2}{3}(x+3)

3 0
1 year ago
Other questions:
  • F(x)=x^(2)+6x-78 completing the square<br><br> fill in the blanks:<br><br> f(x)=(x+blank)^2+blank
    8·1 answer
  • What numbers are between 0.8 and 1.1
    9·2 answers
  • Please Help! It's for Math!
    8·2 answers
  • Use a right triangle to write the following expression in algebraic expression. Assume that x is positive and in the domain of t
    15·1 answer
  • Someone help with math?<br> thanks so much
    11·1 answer
  • 6. Rectangle ABCD is shown above. AB =<br> 3x+8, and CD = 2x+13. Find x.
    9·1 answer
  • What is 2/3 of 9? <br> 2 <br> 3<br> 6 <br> 7
    5·2 answers
  • The table below shows data on the number of emergency room admissions recorded over the span of one shift.
    7·2 answers
  • If X || Y and Y || Z, then ___.
    5·1 answer
  • 5r^2-13r-6=0 <br><br> How do I solve this
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!