Solar energy or solar radiation
Answer:
First law can be deduced from second law.
Acceleration may determine the position and velocity of the system.
Explanation:
When net force is zero, the second law is 0 = ma, or the motion is at constant speed. Thus first law establishes that when there are no forces, the object moves at constant speed, so first law is explained by using the second.
If you determine the acceleration of a system, you may use calculus or kinematic equations to determine velocity and position of the particle and determine how it moves. This is very important in mechanics and engineering, for example, for spacecrafts, forensic situations, etc.
Answer:
Explanation:
The magnitude of the acceleration makes an angle of 30° with the tangential velocity.
Resolving the acceleration to tangential and radial acceleration
at = aCos30 = √3a/2
ar = aSin30 = ½a
a = 2•ar
Then, the tangential acceleration is the linear acceleration, so the relationship between the tangential acceleration and angular acceleration is given as:
at = Rα
Then, α = at/R
since at = √3a/2
Then, α = √3 at/2R, equation 1
The radial acceleration is given as
ar = ω²R
Note that, at² + ar² = a²
at = √(a²-ar²)
Back to equation 1
α = √3 at/2R
α = √3√(a²-ar²)/2R
α = √3√(a²-(w²R)²)/2R
α = √3(a²-w⁴R²) / 2R
Also, a = 2•ar = 2w²R
Then,
α = √3((2w²R)²-w⁴R²) / 2R
α = √3(4w⁴R²-w⁴R²) / 2R
α = √3(3w⁴R²) / 2R
α = √9w⁴R² / 2R
α = 3w²R / 2R
α = 3w²/2
Hydrosphere - all the waters on the earth’s surface.