Answer:
Presión = 175,97 N/m²
Explanation:
Dados los siguientes datos;
Peso del alumno (fuerza) = 725N
Área de zapatos = 412 cm² a metros cuadrados = 412/100 = 4.12 metros
Para encontrar la presión, usaríamos la siguiente fórmula;
Presión = fuerza / área
Presión = 725 / 4.12
Presión = 175,97 N/m²
Answer:
q = 7.4 10⁻¹⁰ C
Explanation:
a) The magnetic force is given by the expression
F = q v x B
Where the blacks indicate vectors, q is the electric charge, v at particle velocity and B the magnitude of the magnetic field. If the velocity is perpendicular to the magnetic field, the sine is 1
F = q v B
Let's calculate the charge
q = F / vB
q = 1.00 10⁻¹² / 30.0 B
For the magnetic field of the earth we have a value between 25μT and 65μT, an intermediate value would be 45 μT, let's use this value.
q = 1 10⁻¹² / (30 45 10⁻⁶)
q = 7.4 10⁻¹⁰ C
b) In laboratories and modern electronics, currents of up to 1 10⁻⁶ A can be achieved without much difficulty, in advanced and research laboratories currents of up to 1 10⁻¹² can be managed. Load values (coulomb) cannot they are widely used today for work, but 1 mA = 3.6C, so we see that getting loads with the value of 10⁻¹⁰ C implies very small current less than 1 10⁻¹³ A, which only in laboratories of Very specialized can be created. Consequently, from the above it would be difficult to find loads lower than the calculated
The electrostatic charge is the one created by the friction between two surfaces, it is an indicated charge, in this case it would be possible to have better wing loads found from 10⁻¹⁰C
Hi sorry she is a little mean sorry
:( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :( :(
Answer:
the wind carries abrasive materials
Explanation:
such as sand and salt over time theses small particles slowly strip way at the land form sculpting it by eroding the softer layers first
Answer:
Spring constant, k = 283.33 N/m
Explanation:
Given that,
Force acting on the spring, F = 8.5 N
Stretching in the spring, x = 3 cm = 0.03 m
Let k is the spring constant of the spring. It can be calculated using Hooke's law as :



k = 283.33 N/m
So, the spring constant of the spring is 283.33 N/m. Hence, this is the required solution.