Answer:
R = 2Ω
Explanation:
Potential difference (V) = current (I) * Resistance (R)
V = IR
I = 2.0A
V = 10v
R = ?
V = IR
R = V / I
R = 10 / 2
R = 2Ω
The resistance across the wire is 2Ω
Energy that is applied to an object.
--TheOneandOnly003
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
a = 0.1962 m/s^2
Explanation:
The magnitude of kinetic friction exerted is given by

Where, μ_k= coefficient of kinetic friction= 0.02 and N = reaction force = mg
Where m= mass = 30 Kg and, g is acceleration due to gravity =9.81 m/s^2
F_k=0.02×30×9.81 =5.886 N
Now, since, there is no applied force this kinetic friction force will cause acceleration of the child
⇒ ma = F_k
here, a is the acceleration
⇒30a = 5.886
⇒ a = 0.1962 m/s^2
Answer:
Velocity
Explanation:
Velocity is an object's change in motion per unit time in a specified direction