Answer:
C
Explanation:
To melt the alcohol
Heat needed = M . L = 2 . 25 = 50 kcal
To warm up the alcohol
Heat needed = M . sp. ht. . ∆t = 2 . 0.6 . 100 = 120 kcal
Total heat needed = 170 kcal
Assuming that 0.6 kcal/ kg / ˚C is the specific heat and that the answer is wanted in kcal ( a rather odd unit to be in use here.)
<h2>
Answer:</h2>
800gm
<h2>
Explanation:</h2>
Archimedes principle states that when an object is immersed in a liquid there is an apparent loss of weight of the object. This apparent loss of weight is also the upthrust experienced by the liquid. The upthrust is equal to the weight of the liquid displaced.
Following from the above statement, when the body of volume 100c.c is immersed in the water contained in the jar, the upthrust experienced is equal to the weight of the water displaced.
<em>Note: In the question, weight is measured just using the mass.</em>
Mass (m) is the product of density (ρ) of liquid (which is water in this case) and volume (v) of body immersed. i.e
m = ρ x v
Where;
ρ = 1 gm/cm³
v = 100c.c = 100cm³
=> m = 1 gm/cm³ x 100cm³
=> m = 100gm
Therefore the weight of water displaced is 100gm
Now, the weight of the water and jar after immersion is the sum of the weight of water and jar before immersion, and the weight of the water displaced. i.e
Weight of water and jar after immersion = 700gm + 100gm = 800gm
Answer:
Temperature : 92.9 F
Internal Energy change: -2.53 Btu/lbm
Explanation:
As
mh1=mh2
h1=h2
In table A-11 through 13E
p2=120Psi, h1= 41.79 Btu/lbm,
u1=41.49
So T1=90.49 F
P2=20Psi
h2=h1= 41.79 Btu/lbm
T2= -2.43F
u2= 38.96 Btu/lbm
T2-T1 = 92.9 F
u2-u1 = -2.53 Btu/lbm
Answer:
p = FΔt = 8.0 N(60 s) = 480 N•s
Explanation:
not asked for, but in that time a frictionless 18 kg mass on a horizontal surface will have change velocity by 480/18 = 26.7 m/s.
An impulse results in a change of momentum.