(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
Answer:
M. Magnetism is a property of individual atoms.
Explanation:
when a magnet is broken into pieces the new pieces behave like the original magnet this observation shows that magnetism is the property of individual atoms.
Enclosed is some guidance algebra.I find this q a little confusing. It quotes "RC" which usually makes me think of electrical circuits and time constants based on converting calculating RC value and equating that to t for one time constant then 2RC for two time constants etc. The theory being that after 5 time constants - 5RC - a circuit is stable. BUT, this q then goes on to mention HALF LIFE. The curves for both half life and time constant are both exponential, as in the number e to the power of something, but the algebra is slightly different. I hope my algebra is ok.