To develop this problem we will apply the Archimedes model. As well as the definitions of Weight based on mass and acceleration. The first in turn will be considered under the relationship of Density and Volume. From the values given we have to:


Since it is in equilibrium, the weight of the object will have a reaction from the water, which will cause the sum of forces between the two objects to be zero, therefore





The value of gravity is canceled because it is a constant



The portion of the object that is submerged corresponds to 82%, while the portion that is visible, above the water level will be 18%
The period T of a pendulum is given by:

where L is the length of the pendulum while

is the gravitational acceleration.
In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is

. Using this data, we can solve the previous formula to find L:
Answer:
1,780,000 N
Explanation:
0.2 atm × (1.013×10⁵ Pa/atm) = 20,260 Pa
Force = pressure × area
F = 20,260 Pa × (3.89 m × 22.6 m)
F = 1,780,000 N
The new volume = 3 x 52.6 that’s because as the pressure decreases by 1/3 the volume increases x3
You need to know how much friction that object.