Answer:
The beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
Explanation:
Given;
velocity of wave on the string with lower tension, v₁ = 35.2 m/s
the fundamental frequency of the string, F₁ = 258 Hz
<u>velocity of wave on the string with greater tension;</u>

where;
v₁ is the velocity of wave on the string with lower tension
T₁ is tension on the string
μ is mass per unit length

Where;
T₁ lower tension
T₂ greater tension
v₁ velocity of wave in string with lower tension
v₂ velocity of wave in string with greater tension
From the given question;
T₂ = 1.1 T₁

<u>Fundamental frequency of wave on the string with greater tension;</u>
<u />
<u />
Beat frequency = F₂ - F₁
= 270.6 - 258
= 12.6 Hz
Therefore, the beat frequency when each string is vibrating at its fundamental frequency is 12.6 Hz
Answer:
im not really good at explaining, but i found this website url:
https://www.numerade.com/questions/a-cyclist-travels-from-point-a-to-point-b-in-10-min-during-the-first-20-min-of-her-trip-she-maintain/
same question just with the explanation
If you exert a force on an object in motion, then depending on the
direction of the force you exert and the direction in which it's already
moving, you may speed it up, slow it down, or change the direction
of its motion. Any of these changes is called an acceleration.
In addition to that, you'll change the object's momentum and kinetic energy.
They may increase or decrease ... again depending on the directions of the
motion and the new force.
You will not change the object's mass, inertia, weight, color, cost,
political affiliation, or gender preference.
Answer:
Explanation:
Input work is the work done on a machine as the input force acts through the input distance. ... Output work is the work done by a machine as the output force acts through the output distance. The machine does to the object to increase the output distance.