Answer: B
Longitudinal wave
Explanation:
Transverse waves have crests and troughs
Longitudinal waves have compressions and rarefactions. A compression is where the density of the wave medium is highest. While a rarefaction is where the density of the wave medium is lowest.
Since sound wave is a longitudinal wave. And longitudinal wave exists apart from sound, we can therefore conclude that it's a longitudinal wave in spring.
Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
Time required : 3 s
<h3>Further explanation
</h3>
Power is the work done/second.
To do 33 J of work with 11 W of power
P = 11 W
W = 33 J
Answer: Skilled manpower is essential to carry out several development activities.
Explanation:
Answer:
2 * 10^5 pa
Explanation:
Pressure = Force / Area
Each thigh bone has a cross sectional area of 10cm²
Both thigh bones :
2 * 10cm² = 20cm²
To m² : 20 * (0.01)²
20 * 0.0001 m² = 0.002 m²
Force = mass * acceleration due to gravity(g)
g = 10m/s² ;
Force = 40 * 10 = 400N
Pressure = 400 N / 0.002 m²
Pressure = 200,000 N/m² = 2 * 10^5 pascal