It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.
Answer:
A -Added when in the same direction
Subtracted when in opposite directions.
Explanation:
I’m pretty sure it is caused by the heat of the sun warming it up back into its original state of tar
Answer:
F = 39.36 N
Explanation:
given,
initial speed, u = 38 m/s
final speed, v = 0 m/s
mass of ball = 0.145 Kg
time, t = 0.14 s
Force = ?
using impulse formula
J = change in momentum
J = F x t
m(v - u) = F x t
0.145 x (0 - (-38)) = F x 0.14
F x 0.14 = 5.51
F = 39.36 N
force exerted by the ball is equal to 39.36 N.
The statement “Impulse is a vector quantity” is true about Impulse.
Answer: Option B
<u>Explanation:
</u>
The object’s action by applied force in a particular time interval, there happens changing in momentum called impulse. It is denoted by a symbol ‘J’ or ‘imp’ and expressed in a unit ‘Ns’. As impulse depends on the acted force, when a collision arises from front, behind or side, the force’s direction would be differed.

So, from this option A is false as impulse is not a force but changing momentum. The unit is not Newton, it is Newton second (Ns). The force direction differs (impulse direction) for each cases of collision, so option D also false. Hence, option B seems to be correct. Vector quantity deals with both direction and magnitude and important in motion study.