Molarity is given as,
Molarity = Moles / Volume of Solution ----- (1)
Also, Moles is given as,
Moles = Mass / M.mass
Substituting value of moles in eq. 1,
Molarity = Mass / M.mass × Volume
Solving for Mass,
Mass = Molarity × M.mass × Volume ---- (2)
Data Given;
Molarity = 2.8 mol.L⁻¹
M.mass = 101.5 g.mol⁻¹
Volume = 1 L (I have assumed it because it is not given)
Putting values in eq. 2,
Mass = 2.8 mol.L⁻¹ × 101.5 g.mol⁻¹ × 1 L
Mass = 284.2 g of CuF₂
Explanation:
Reaction equation for the given chemical reaction is as follows.

Equation for reaction quotient is as follows.
Q = 
= 
= 0.256
As, Q > K (= 0.12)
The effect on the partial pressure of
as equilibrium is achieved by using Q, is as follows.
- This means that there are too much products.
- Equilibrium will shift to the left towards reactants.
- More
is formed.
- Partial pressure of
increases.
Answer:
4
Explanation:
Avogadro’s number represent the number of the constituent particles which are present in one mole of the substance. It is named after scientist Amedeo Avogadro and is denoted by
.
Also, it is the number of particles in exactly 12.000 g of isotope carbon 12.
Avogadro constant:-
Hence,
Mass of
= 131.293+ n18.998 g
So,
molecules have a mass of 131.293+ n18.998 g
Also,
molecules have a mass of
g
So,
molecules have a mass of
g
Also, given mass = 0.172 g
Thus,




<u>Thus, value of n is 4.</u>