Answer:
[2 ]Na+[2 ]H2O -> [ 2] NaOH + [1]H2
Answer:
No
Explanation:
The mass fraction is defined as:

where:
- wi: mass fraction of the substance i
- mi: mass of the substance i
- mt: total mass of the system
<u><em>The mass fraction of two substances (A and B), will be the same, ONLY if the mass of the substance A (mA) is the same as the mass of the substance B (mB).</em></u>
An equimolar mixutre of O2 and N2 has the same amount of moles of oxygen and nitrogen, just to give an example let's say that the system has 1 mole of O2 and 1 mole of N2. Then using the molecuar weigth of each of them we can calculate the mass:
mA= 1 mole of O2 * 16 g/1mol = 16 g
mB=1 mole of N2 *28 g/1mol=28 g
As mA≠mB then the mass fractions are not equal, so the answear is NO.
It is -2 because the charge will be at zero and electrons lower the charge
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100