The second law of thermodynamics establishes restrictions on the flow of thermal energy between two bodies. This law states that the energy does not flow spontaneously from a low temperature object T1, to another object that is at a high temperature T2.
For example. Suppose you place your cell phone on the table. Your phone is at a temperature of 40 ° C and the table is at 19 ° C. Then, it is impossible for the table to spontaneously transfer its thermal energy to the telephone, and so that the table gets colder and the telephone warmer.
Finally we can say that the correct option is B: From the hotter object to the cooler object
Answer:
in the lab
Explanation:
cause that is where scientist spend their time doing research ...
Answer:
Explanation:
As the dielectric is inserted between the plates of a capacitor, the capacitance becomes K times and the electric field between the plates becomes 1 / K times the original value. Where, K be the dielectric constant.
Answer:
(a) T= 38.4 N
(b) m= 26.67 kg
Explanation:
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Kinematics
d= v₀t+ (1/2)*a*t² (Formula 2)
d:displacement in meters (m)
t : time in seconds (s)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
v₀=0, d=18 m , t=5 s
We apply the formula 2 to calculate the accelerations of the blocks:
d= v₀t+ (1/2)*a*t²
18= 0+ (1/2)*a*(5)²
a= (2*18) / ( 25) = 1.44 m/s²
to the right
We apply Newton's second law to the block A
∑Fx = m*ax
60-T = 15*1.44
60 - 15*1.44 = T
T = 38.4 N
We apply Newton's second law to the block B
∑Fx = m*ax
T = m*ax
38.4 = m*1.44
m= (38.4) / (1.44)
m = 26.67 kg