Answer:
The acceleration of man 1 and 2 is
and
.
Explanation:
Mass of man 1, m₁ = 80 kg
Mass of man 2, m₂ = 60 kg
One man pulls on the rope with a force of 250 N.
Let a₁ is acceleration of man 1,
F = m₁a₁

Let a₂ is acceleration of man 1,
F = m₂a₂

So, the acceleration of man 1 and 2 is
and
.
Explanation:
Given parameters:
Distance hopped = 84m
Displacement = 84m due east
Time = 7s
Unknown:
Speed of kangaroo = ?
Velocity of kangaroo = ?
Solution:
To solve this problem,
Speed =
=
= 12m/s
Velocity =
=
= 12m/s due east
Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
Answer:
I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).
The moment of inertia about the center of a sphere is 2 / 5 M R^2.
By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is I = 2/5 M R^2 + M R^2 = 7/5 M R^2
I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2
Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.