The total resistance is 420 ohm.
A circuit with resistive elements of 220, 100, 57, and 43 produce what total resistance
R= 220+ 100+ 57+ 43
= 420 Ω
What is resistance and its types?
Resistance is a measure of the opposition to current flow in an electrical circuit also known as ohmic resistance or electrical resistance. Ohms are measured as resistance, symbolized by the Greek letter omega (Ω). The ratio of the applied voltage to the current through the material is then known as resistance.
What causes resistance?
An electric current flows when electrons move through a conductor, such as a metal wire. The moving electrons can collide with the ions in the metal. This makes it more difficult for the current to flow, and causes resistance.
Learn more about resistance:
brainly.com/question/17563681
#SPJ4
300 miles / 6 hours = 50 miles per hour
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1
Answer:
91.3°F
Explanation:
Let T be the temperature of the thermometer at any time
T∞ be the temperature of the room = 70°F
T₀ be the initial temperature of the thermometer = 212°F
And m, c, h are all constants from the cooling law relation
From Newton's law of cooling
Rate of Heat loss by the cake = Rate of Heat gain by the environment
- mc (d/dt)(T - T∞) = h (T - T∞)
(d/dt) (T - T∞) = dT/dt (Because T∞ is a constant)
dT/dt = (-h/mc) (T - T∞)
Let (h/mc) be k
dT/(T - T∞) = -kdt
Integrating the left hand side from T₀ to T and the right hand side from 0 to t
In [(T - T∞)/(T₀ - T∞)] = -kt
(T - T∞)/(T₀ - T∞) = e⁻ᵏᵗ
(T - T∞) = (T₀ - T∞)e⁻ᵏᵗ
Inserting the known variables
(T - 70) = (212 - 70)e⁻ᵏᵗ
(T - 70) = 142 e⁻ᵏᵗ
At t = 2 minute, T = 125°F
125 - 70 = 142 e⁻ᵏᵗ
55/142 = e⁻ᵏᵗ
- kt = In (55/142) = In (0.3873)
- k(2) = - 0.9485
k = 0.4742 /min
At time t = 4 mins
kt = 0.4742 × 4 = 1.897
(T - 70) = 142 e⁻ᵏᵗ
e^(-1.897) = 0.15
T - 70 = 142 × 0.15 = 21.3
T = 91.3°F
Answer:
They move farther apart
Explanation:
When objects heat up they expand for example heating up a balloon makes it expand