When air resistance<span> acts, acceleration during a fall </span>will<span> be less than g because </span>air resistance affects<span> the motion of the falling </span>objects<span> by slowing it down. </span>Air resistance<span> depends on two important factors - the</span>speed<span> of the </span>object<span> and its surface area. Increasing the surface area of an </span>object<span> decreases its </span>speed<span>.</span>
Answer:
659.01W
Explanation:
The cab has a mass of 1250 kg, the weight of the cab represented by Wc will be
Wc = mass of the cab × acceleration due to gravity in m/s²
Wc = 1250 × 9.81 = 12262.5 N
but the counter weight of the elevator represented by We = mass × acceleration due to gravity = 995 × 9.81 = 9760.95 N
Net weight = weight of the cab - counter weight of the elevator = Wc - We = 12262.5 - 9760.95 = 2501.55 N
the motor of the elevator will have to provide this in form of work
work done by the elevator to lift the cab to height of 49 m = net weight × distance (height) = 2501.55 × 49m
power provided by the motor of the elevator = workdone by the motor / time in seconds
Power = (2501.55 × 49) ÷ ( 3.1 × 60 seconds) = 659.01 W
Answer:
35, I got you bro, i got you
Answer:
You're four sentences should include about how the roller coaster has the most potential energy at the top of the track, and the opposing energy, "kinetic" has the most kinetic energy when going down the hill.
Explanation:
Kinetic - In-Motion.
Potential - Gathering Energy to go into Motion.
( I'll try to answer questions to clear up confusion. )
Answer:
The two answers are in the explanation
Explanation:
Please find the attached files for the solution