volume of milk is given as

we will convert it into mL unit

mass of the milk m = 2kg
m = 2000 g
now for the density we can use



<em>so the density is 0.264 g/mL for above sample</em>
Answer:
The number of paces it would take to get to the Moon is 213,555,556 paces
Explanation:
The given length of Mr Galan's paces = 1.8 m/pace
The distance from the Earth to the Moon is, 384,400 km = 384,400,000 m
Therefore, the number of paces, "n", it would take to get to the Moon from the Earth is given as follows;
n = (The distance from the Earth to the Moon)/(The length of each Mr Galan's paces)
∴ n = 384,400,000 m/(1.8 m/pace) = 213,555,556 paces
The number of paces it would take to get to the Moon = n = 213,555,556 paces
Answer:
Given that,
- Power = 2000 W
- time = 60 seconds
- distance= 10m
Power = work done ÷ time
Here, since the movement is vertical, w = mgh
So,
Power = mgh÷t
2000 = (m × 9.8 ×10) ÷ 60
m = (2000 ×60) ÷98
m = 1224.5kg
Answer:
a)ΔS₁ = - 9.9 J/K
ΔS₂ = 69 J/K
b)The entropy change for the rod = 0 J/K
c)ΔS = 59.1 J/K
Explanation:
Given that
T₁ = 699 K
T₂= 101 K
Q= 6970 J
Change in entropy given as

For 699 K:


ΔS₁ = - 9.9 J/K ( Negative because heat is leaving from the system)
For 101 K;


ΔS₂ = 69 J/K
The entropy change for the rod = 0 J/K
Entropy change for the system
ΔS = ΔS₂ + ΔS₁
ΔS = 69 -9.9 J/K
ΔS = 59.1 J/K
Answer:
The responses to this question can be defined as follows:
Explanation:
During energy exchange E=hv, electrodes spring through one orbit to another
Please find the image file in the attachment.
Its absorption layer comprises 0.3 eV, 0.5 eV., 0.8 eV, 2.0 eV, 2.5 eV again, as light passes via material at low temperature those lines absorbed in the strata called absorption stratum.