Answer:
12 N/cm²
Explanation:
From the question given above, the following data were obtained:
Weight (W) of block = 240 N
Area (A) = 20 cm²
Pressure (P) =?
Next, we shall determine the force exerted by the block. This can be obtained as follow:
Weight (W) of block = 240 N
Force (F) =.?
Weight and force has the same unit of measurement. Thus, we force applied is equivalent to the weight of the block. Thus,
Force (F) = Weight (W) of block = 240 N
Force (F) = 240 N
Finally, we shall determine the pressure on the floor as follow:
Force (F) = 240 N
Area (A) = 20 cm²
Pressure (P) =?
P = F/A
P = 240 / 20
P = 12 N/cm²
Therefore, the pressure on the floor is 12 N/cm².
Answer and Explanation:
with reference to Einstein's theory of special relativity, the speed of an electromagnetic radiation, here, laser will not change in any inertial frame or remains same irrespective of any change in inertial frame.
Therefore, the speed of light measured in both the cases, i.e., in astronaut's reference frame and spaceship's reference frame will be equal to the speed of light in vacuum, i.e.,
.
The laser gun's speed in astronaut's reference frame is the same as the speed of the spaceship as it mounted on it, i.e., the speed of the laser gun is 200 million m/s.
The laser gun's speed measured in spaceship's reference frame will be zero, as it is mounted on the spaceship and is stationary in the spaceship's reference frame.
Force=tension-fg sin ∅
=140-mg sin 18.5
=140-124.35
=15.62N
a=f/m=15.62/40=0.39
now,
v²=u²+2as
=2×0.39×80
v²=62.4
v=7.8m/s
Explanation:
The refraction is the change in the direction of light while travelling from the one medium to another due to having different speeds in different mediums.
To determine how much light gets refracted, it depends on the density of substance and the wavelength and the angle at which light enters the substance.
Light travels more slowly in denser medium than the rarer medium. The refractive index of glass is more than water or air. Light gets refracted more in this. When the light travels from rarer to denser then the light will get bend towards the normal. When the light travels from denser to rarer then the light will get bend away from the normal.
Glass is more denser than air or water. Water is more denser than the air. When light travels from air to glass then the light gets bends towards the normal. When the light travels from glass to the air then light gets bends away from the normal.
Therefore, the light gets refracted more in the glass than air to water.