Answer:
volume
v = 4/3π r^3
Explanation:
it isn't specific enough but that is the equation of how to get any volume
volume equals four thirds times pi times radios to the power of three
Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
When there are 14c-lable uracil that are added to the growth medium of cells, the macromolecules that will be labled are RNA. Uracil is a nucleobase that make up the DNA or the RNA. In RNA, uracil binds with other nucleobase (adenine) through hydrogen bonds.
Answer:
94.44
Explanation:
Volume is equal to Mass/Density so therefore, you do the mass which is 68.0 g/0.72 g/mL which is the density and get 94.44 mL because the g cancel each other out when it comes to the label!
The molarity of Sr(OH)2 solution is = 0.1159 M
calculation
write the equation for reaction
that is, Sr(OH)2 +2HCl→ SrCl2 + 2 H2O
then finds the mole of HCl used
moles = molarity x volume
=40.03 x0.1159 = 4.639 moles
by use of mole ratio between Sr(OH)2 to HCL which is 1 :2 the moles of Sr(OH)2 is therefore = 4.639 x1/2 = 2.312 moles
molarity of Sr(OH)2 is = moles / volume
=2.312 /20 =0.1159 M