The
reaction is<span>
C</span>₂H₄ +
O₂ → CO₂ + H₂O<span>
To balance the equation, both side have same
number of elements. Here,</span>
In left hand
side has
in right hand side has
4 H atoms
2 H
atoms
2 C atoms 1 C
atom
<span>
2 O atoms 3 O
atoms
First, we have to balance number of C atoms and number of H atoms in both side.
To balance C atoms, '2' should be added before CO</span>₂ and to balance H atoms, '2' should be added
before H₂<span>O.
Then number of oxygen atoms is </span>2 x 2 + 2 = 6 in right hand side. So, 3 should be
added before O₂<span> in left hand side.
After balancing the equation should be,</span>
C₂H₄<span> + 3O</span>₂<span> → 2CO</span>₂<span> + 2H</span>₂O
Answer:
Constellations Changing Positions!!!! :D <----(smiley face)
Explanation:
Due to the earth's rotation, stars appear to move. As the Earth rotates from west to east, the stars appear to rise in the East, moving across south to set in the west. The Sun will appear to move through the stars, making one complete circuit of the sky in 365 days!!
(yes i'm literally 9+6 years old and idek why i'm doing this XD )
Answer:
mass of CO = 210.42 g
mass in three significant figures = 210. g
Explanation:
Given data:
mass of Fe2O3 = 0.400 Kg
mass of CO= ?
Solution:
chemical equation:
Fe2O3 + 3CO → 2Fe + 3CO2
Now we will calculate the molar mass of Fe2O3 and CO.
Molar mass of Fe2O3 = (55.845 × 2) + (16 × 3) = 159.69 g/mol
Molar mass of CO = 12+ 16 = 28 g/mol
now we will convert the kg of Fe2O3 in g.
mass of Fe2O3 = 0.400 kg × 1000 = 400 g
number of moles of Fe2O3 = 400 g/ 159.69 g/mol = 2.505 mol
mass of CO = moles of Fe2O3 × 3( molar mass of CO)
mass of CO = 2.505 mol × 84 g/mol
mass of CO = 210.42 g
mass in three significant figures = 210. g