Is (-3,2)(−3,2)left parenthesis, minus, 3, comma, 2, right parenthesis a solution of -4x -10y < -9−4x−10y<−9minus, 4, x, m
r-ruslan [8.4K]
Answer:
The answer to your question is The point (-3, 2) is not a solution
Step-by-step explanation:
Inequality
- 4x - 10y < - 9
-point (-3, 2)
Process
1.- To solve this problem, just substitute the point in the inequality and simplify
a) Substitution
-4(-3) - 10(2) < - 9
b) Simplification
12 - 20 < - 9
c) Result
- 8 < - 9
This is false, -8 > -9
28 x .15 = 4.2
28 + 4.2 = 32.2 <---- ANSWER
Hope this helps :)
The value of x in the given equation
is 0.03
<u>Step-by-step explanation:</u>
The given equation is that 
<u>The steps to be followed to solve the equation are :</u>
Add the like terms together to reduce the equation in a simplified form.
Here, there are two x terms and they must be reduced to a single term.
For this, add the both terms together so that the equation is simplified into one x term and a constant term.
⇒ 
⇒ 
To eliminate the constant term on the left side of the equation, add 0.1245 on both sides.
⇒ 
⇒ 
Now, the equation is further simplified by dividing 4.15 on both sides,
⇒ 
⇒ 
Therefore, the value of x is 0.03
SLope = (2 + 2)/(2 + 2) = 4/4 = 1
Answer
1
------------------------------------------------------------------
Question
------------------------------------------------------------------

------------------------------------------------------------------
Split the fraction on the left
------------------------------------------------------------------

------------------------------------------------------------------
Take away h/5 from both sides
------------------------------------------------------------------

------------------------------------------------------------------
Change the denominator to be the same
------------------------------------------------------------------

------------------------------------------------------------------
Put it into single fraction
------------------------------------------------------------------

-------------------------------------------------------------------
Rearrange (This step may not be necessary)
------------------------------------------------------------------
