Answer: The level of CO2 has risen.
Explanation:
From the table shown, we can see that the quantity of CO₂ in the atmosphere has steadily risen since the year 1960 going from 317 CO₂PPM in that year to 390 CO₂PPM in 2010.
This is a cause for alarm because with so much carbon dioxide in the atmosphere, there will be an even greater greenhouse effect that will contribute to global warming.
The rule that is used to get the strength of magnetic field at the center of solenoid (B) is:
B = <span>µ x n x I where:
</span>µ is the permeability of the medium where the solenoid is based. In this problem, the medium is air which means that µ = <span>µ </span><span>o = 4 pi x 10^-7 Tm/A
</span>I is the current passing (I = 4 amperes)
n is the number of turns per unit length (5000 turns)
Substituting in the mentioned equation, we find that:
B = 4 x 3.14 x 10^-7 x 5000 x 4 = 25.132 mT
Answer:
a) Ep = 5886[J]; b) v = 14[m/s]; c) W = 5886[J]; d) F = 1763.4[N]
Explanation:
a)
The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.
![E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2060%5Bkg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%3D%2010%20%5Bm%5D%5C%5CE_%7Bp%7D%3D60%2A9.81%2A10%5C%5CE_%7Bp%7D%3D5886%5BJ%5D)
b)
Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.
![E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20E_%7Bk%7D%20%5C%5C5886%20%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B5886%7D%7B0.5%2A60%7D%20%7D%5C%5Cv%20%3D%2014%5Bm%2Fs%5D)
c)
The work is equal to
W = 5886 [J]
d)
We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.
![v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%3D%20v_%7Bo%7D%20%5E%7B2%7D-2%2Aa%2Ad%5C%5Cwhere%3A%5C%5Cd%20%3D%202.5%5Bm%5D%5C%5Cv_%7Bf%7D%3D0%5C%5Cv_%7Bo%7D%20%3D14%5Bm%2Fs%5D%5C%5CTherefore%5C%5Ca%20%3D%20%5Cfrac%7B14%5E%7B2%7D%20%7D%7B2%2A2.5%7D%20%5C%5Ca%20%3D%2039.2%5Bm%2Fs%5E2%5D)
By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.
m*g - F = m*a
F = m*a - m*g
F = (60*39.2) - (60*9.81)
F = 1763.4 [N]
Answer:
The length of the stick is 0.28 m.
The time the stick take to move is 0.97 ns.
Explanation:
Given that,
Relative speed of stick v= 0.96 c
Speed of light 
Proper length of stick = 1 m
We need to calculate the length of the stick
Using formula of length

Put the value into the formula



We need to calculate the time the stick take to move
Using formula of time

Put the value into the formula



Hence, The length of the stick is 0.28 m.
The time the stick take to move is 0.97 ns.
Answer:
the inertia provides the tendency to maintain speed and keep moving