Sorry that you got your answer late but the answer is 0.035m
Answer: A is Compression and B is Rarefaction.
Explanation:
i think it's right. hope it helps.
Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

<h3>b.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient
the formula is:

where I is the intensity of the beam,
is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:




After travelling 2 cm:




<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:




After travelling 2 cm:




Do you have a picture of the diagram that I could view?
Well, first of all, the car is not moving at a uniform velocity, because,
on a curved path, its direction is constantly changing. Its speed may
be constant, but its velocity isn't.
The centripetal force on a mass 'm' that keeps it on a circle with radius 'r' is
F = (mass) · (speed)² / (radius).
For this particular car, the force is
(2,000 kg) · (25 m/s)² / (80 m)
= (2,000 kg) · (625 m²/s²) / (80 m)
= (2,000 · 625 / 80) (kg · m / s²)
= 15,625 newtons .