-- What's the volume of a cylinder with radius=1m and height=55m ?
( Volume of a cylinder = π R² h )
-- How much does that volume of water weigh ?
1 liter of water = 1 kilogram of mass
Weight = (mass) x (acceleration of gravity)
-- What's the area of the bottom of that 1m-radius cylinder ?
Pressure = (force) / (area)
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
Answer: 1026s, 17.1m
Explanation:
Given
COP of heat pump = 3.15
Mass of air, m = 1500kg
Initial temperature, T1 = 7°C
Final temperature, T2 = 22°C
Power of the heat pump, W = 5kW
The amount of heat needed to increase temperature in the house,
Q = mcΔT
Q = 1500 * 0.718 * (22 - 7)
Q = 1077 * 15
Q = 16155
Rate at which heat is supplied to the house is
Q' = COP * W
Q' = 3.15 * 5
Q' = 15.75
Time required to raise the temperature is
Δt = Q/Q'
Δt = 16155 / 15.75
Δt = 1025.7 s
Δt ~ 1026 s
Δt ~ 17.1 min
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!