To calculate the initial velocity of the bike, we use the following equation
.
or

Here, u is initial velocity, v is final velocity, t is the time and d is the distance covered by bike.
Given,
,
and
.
Substituting these values in above equation, we get
.
Thus, the initial velocity of the bike is 1.2 m/s.
Answer:
v=115 m/s
or
v=414 km/h
Explanation:
Given data

To find
Terminal velocity (in meters per second and kilometers per hour)
Solution
At terminal speed the weight equal the drag force

For speed in km/h(kilometers per hour)
To convert m/s to km/h you need to multiply the speed value by 3.6
Its true the ionic compounds have a higher melting point
Answer:
time will elapse before it return to its staring point is 23.6 ns
Explanation:
given data
speed u = 2.45 ×
m/s
uniform electric field E = 1.18 ×
N/C
to find out
How much time will elapse before it returns to its starting point
solution
we find acceleration first by electrostatic force that is
F = Eq
here
F = ma by newton law
so
ma = Eq
here m is mass , a is acceleration and E is uniform electric field and q is charge of electron
so
put here all value
9.11 ×
kg ×a = 1.18 ×
× 1.602 ×
a = 20.75 ×
m/s²
so acceleration is 20.75 ×
m/s²
and
time required by electron before come rest is
use equation of motion
v = u + at
here v is zero and u is speed given and t is time so put all value
2.45 ×
= 0 + 20.75 ×
(t)
t = 11.80 ×
s
so time will elapse before it return to its staring point is
time = 2t
time = 2 ×11.80 ×
time is 23.6 ×
s
time will elapse before it return to its staring point is 23.6 ns