Answer:
the magnitude of the work done by the two blocks is the same.
Explanation:
The work done by block a on block b is given by:

where Fa is the force exerted by block a on block b, and d is the distance they cover.
The work done by block b on block a is given by:

where Fb is the force exerted by block b on block a, and d is still the distance they cover.
For Newton's third law, the force exerted by block a on block b is equal to the force exerted by block b on block a, therefore

and so

20c because te mass of the object is larger than the table
Explanation:
Average speed = distance / time
|v| = (7 km + 2 km) / (2 hr + 1 hr)
|v| = 3 km/hr
Average velocity = displacement / time
v = (7 km east + 2 km east) / (2 hr + 1 hr)
v = 3 km/hr east
Answer: v = 2.53 m/s at E 53.1° S
Explanation:
Conservation of momentum
The 400 g object has no North-South velocity, so the initial momentum in that direction is zero. The total momentum after collision must also be zero
0 = 400(8sin35) + 650vy
vy = -2.82376... m/s
In the East direction
400(10) = 400(8cos35) + 650vx
vx = 2.121097...m/s
v = √(2.12² + 2.82²) = 3.531667... ≈ 2.53 m/s
θ = arctan(vy/vx) = arctan(-2.82/2.12) = -53.087... ≈ E53.1°S
The chair and floor have a static friction coefficient of 7.9523 and a kinetic friction coefficient of 0.8114, respectively.
<h3>What causes static friction?</h3>
The braking force of an item is static friction. The resistance humans encounter when attempting to move something fastened to the ground without actually moving thier own bodies or the surface that are sitting on is described as static friction.
<h3>What causes static friction to form?</h3>
Adhesion, a slight chemical attraction between contact objects, is what causes static friction. Friction is also produced by the interaction of the flaws on each surface.
To know more about static friction visit:
brainly.com/question/13754413
#SPJ13