Answer:
The answer to the question is
3340800 m far
Explanation:
To solve the question, we note that acceleration = 29 m/s²
Time of acceleration = 8 minutes
Then if the shuttle starts from rest, we have
S = u·t+0.5·a·t² where u = 0 m/s = initial velocity
S = distance traveled, m
a = acceleration of the motion, m/s²
t = time of travel
S = 0.5·a·t² = 0.5×29×(8×60)² = 3340800 m far
Answer:
-10.8°, or 10.8° below the +x axis
Explanation:
The x component of the resultant vector is:
x = 3.14 cos(30.0°) + 2.71 cos(-60.0°)
x = 4.07
The y component of the resultant vector is:
y = 3.14 sin(30.0°) + 2.71 sin(-60.0°)
y = -0.777
Therefore, the angle between the resultant vector and the +x axis is:
θ = atan(y / x)
θ = atan(-0.777 / 4.07)
θ = -10.8°
The angle is -10.8°, or 10.8° below the +x axis.
Answer:
It releases some of the energy into the atmosphere as hot steam.
Explanation:
Density offers a convenient means of obtaining the mass of a body from its volume or vice versa; the mass is equal to the volume multiplied by the density (M = Vd), while the volume is equal to the mass divided by the density (V = M/d).
M = V d
M = 1.4 * 2 = 2.8 kg
The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,

The final position of the heroin is below the ground level,

The initial height will be the zero point of our system of reference,


Replacing all this values we have,



Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J