Answer:
B)−6,942 J
/mol
Explanation:
At constant temperature and pressure, you cand define the change in Gibbs free energy, ΔG, as:
ΔG = ΔH - TΔS
Where ΔH is enthalpy, T absolute temperature and ΔS change in entropy.
Replacing (25°C = 273 + 25 = 298K; 25.45kJ/mol = 25450J/mol):
ΔG = ΔH - TΔS
ΔG = 25450J/mol - 298K×108.7J/molK
ΔG = -6942.6J/mol
Right solution is:
<h3>B)−6,942 J
/mol</h3>
<u>Answer:</u> The acceleration of the object is 2m/s^2. If net force increases, acceleration will also increase and if mass increases, the acceleration will decrease.
<u>Explanation:</u>
Force is defined as the product of object's mass and acceleration.
Mathematically,
F = ma ......(1)
or,
a = F/m .....(2)
where,
F = Force exerted on an object = 60N
m = mass of an object = 30kg
a = acceleration of the object = ?
Putting values in above equation, we get:
a = 60 kg.m/s^2/30 kg = 2m/s^2
The acceleration of the car is 2m/s^2.
From equation 2, it is visible that acceleration is directly proportional to force. This means that \if force increases, acceleration also increases.
And acceleration is inversely proportional to mass of the object. This means that if mass increases, the acceleration decreases.
Hence, if net force increases, acceleration will also increase and if mass increases, the acceleration will decrease.
Ocean currents determine the various directions of wind movement.
<h3>What is ocean current?</h3>
Ocean currents are caused by differences in density as well as the temperature of the moving winds across the ocean. In the ocean, warm water is found at the top while cooler water occurs far below.
Warm ocean currents originate near the equator and move towards the poles. The ocean currents control the direction of winds in an area.
Learn more about ocean currents: brainly.com/question/20823678
Answer:
The answer is
<h2>5.43 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 250 g
volume = 46 mL
The density is

We have the final answer as
<h3>5.43 g/mL</h3>
Hope this helps you
An element bonds chemically to fill it's outer valence electron shell, when that occurs it becomes stable.