weather
plants don't survive in the extreme cold and ice that cover these regions year-round.
less plants less animals
I am assuming that this compound contains carbon, hydrogen and oxygen. The molar mass of carbon, hydrogen and oxygen is 12, 1 and 16 grams/mol. Given these molar mass we now need to know the number of C H and O in the compound. To have 132 the compound must be C6H12O3
A light layer of vacuum grease is applied to the rim of the belljar. Water at room temperature is placed inside and the vacuum pump is then used to evacuate the vessel. When the air pressure is reduced to the vapour pressure of water at room temperature the water will begin to boil.
A crushed garlic will have a lot of flavor when placed in food due to the surface area that is in contact with the food. When we have a large piece of garlic, only the external part touches the food and its full capacity is not used. When we reduce the size of the year by crushing the internal parts that were not in contact with the food, now they will be, in addition, liquids are also released due to the pressure exerted on the garlic and these liquids mix more easily with the food and they give it more flavor. For better understanding we can see the following figure:
Simply to understand it, in the figure, there is a clove of whole garlic represented by the rectangle that will have a height of 3 and a width of 1, the units do not matter in this case. The area that is in contact will be equal to 8, but if we divide the garlic into three equal parts, it will have a contact area greater than 12. Therefore, the more we divide the garlic, the more area it will be in contact with the food and will give it more flavor.
Answer:
0.27 atm
Explanation:
<em>At 25ºC, Kp = 2.9 x 10⁻³ for the reaction NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g). In an experiment carried out at 25ºC, a certain amount of NH₄OCONH₂ is placed in an evacuated rigid container and allowed to come to equilibrium. Calculate the total pressure in the container at equilibrium.</em>
Step 1: Make an ICE chart
Solid and liquids are ignored in ICE charts.
NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g)
I 0 0
C +2x +x
E 2x x
Step 2: Write the pressure equilibrium constant expression (Kp)
Kp = [NH₃]² × [CO₂]
Kp = (2x)² × x
2.9 × 10⁻³ = 4 x³
x = 0.090 atm
Step 3: Calculate the pressures at equilbrium
pNH₃ = 2x = 2(0.090 atm) = 0.18 atm
pCO₂ = x = 0.090 atm
The total pressure is:
P = 0.18 atm + 0.090 atm = 0.27 atm