An osmolarity of saline solution is 308 mosmol/L.
m(NaCl) = 9 g; the mass of sodium chloride
V(solution) = 1 L; the volume of the saline solution
n(NaCl) = 9 g ÷ 58.44 g/mol
n(NaCl) = 0.155 mol; the amount of sodium chloride
number of ions = 2
Osmotic concentration (osmolarity) is a measure of how many osmoles of particles of solute it contains per liter.
The osmolarity = n(NaCl) ÷ V(solution) × 2
The osmolarity = 0.154 mol ÷ 1 L × 2
The osmolarity = 0.154 mol/L × 1000 mmol/m × 2
The osmolarity of the saline solution = 308 mosm/L.
More about osmolarity: brainly.com/question/13258879
#SPJ4
You can use the equation ΔS(surr)=q(surr)/T or ΔS(surr)=-q(rxn)/T.
the two equations are equal since we know that the energy the system (reactoin) puts out just goes into the surroundings.
(In other words q(surr)=-q(rxn))
Using the equation, <span>ΔS(surr)=-(-283kJ/298K)=0.9497kJ/K or 949.7J/K
This answer makes sense since the reaction is exothermic which means it released energy into the system which usually causes the entropy to increase.
I hope that helps.</span>
We know that the element Z = 119 would be placed right below the Fr, in the column of the alcaline metals.
We also know that the trend in the electronegativity is to decrease when you go up-down ia group.
The known electronegativities of the elements of this group are:
Li: 0.98
Na: 0.93
K: 0.82
Rb: 0.82
Cs: 0.79
Fr: 0.70
Then the hypotetical element Z = 119 would probably have an electronegativity slightly below 0.70, for sure in the range 0.60 - 0.70.
C, the amount of oxygen produced is the dependent variable since that is what is being measured and it is dependent on which substance is being tested