You can use Le Chatelier's Principle to describe the equilibrium shift.
Le Chaterlier's Principle states that: "<span>If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change."
Thus, if you heat up the reaction, the equilibrium shift favors the endothermic reaction. If you increase pressure (if gases are involved), the shift favors the reaction that produces less gaseous products (to counteract pressure) and so on.</span>
.54 km to dm is 5,400 decimeters. Hope this helps, have a BLESSED day! :-)
Answer:
2.52 x
J
Explanation:
The energy given off by the microwave can be determined by the application of Planck's energy formula:
E = hf
where: E is the required energy, h is Planck's constant (6.626 x 
Kg/s), and f is the frequency (3.8 x
Hz).
So that;
E = 6.626 x
x 3.8 x 
= 2.51788 x 
Therefore, the energy released by the wave is 2.52 x
J.
Answer:
solution is clear solution while colloidal is between the solution and suspension. And in suspension particles are suspended.
Explanation:
In solution light can be passed without any scattering of light from solute particles while suspension is cloudy and having larger particle size than colloids, if suspension stands for a while particles will settle down easily.
In colloids light will scattered and dispersed by reflecting with large particles.
Answer:
<h2>Actin and myosin.</h2>
Explanation:
The cells that allow your bones to move, the movement of thick (myosin) and thin (actin) filaments during contraction
.
During a contraction thick and thin filaments do not shorten but increase their overlap of each other.
Thin filaments slide past thick filaments extending more deeply into the A band.
The I bands and H bands decrease in lenght as Z discs are come closer together
.
Sarcomere represents area between two Z disc, so the sarcomere gets smaller during a contraction
.