Not all states and parts of the country re suitable for wind power because the weather isnt always stable
Answer:
= 3.36 mm
Explanation:
From Ohm's law,
(Voltage = Current * Resistance)

The geometric definition of resistance is

where
is the resistivity of the material,
and
are the length and cross-sectional area, respectively.


Since the wire is assumed to have a circular cross-section, its area is given by
where
is the diameter.


Resistivity of copper =
. With these and other given values,



In 1920, after returning from Army service, he produced a successful model and in 1923 turned it over to the Northeast Electric Company of Rochester for development.
Decreases the input force
Answer:
We know the momentum after the collision MUST be equal to the momentum BEFORE the collision.
Momentum is a VECTOR quantity having both magnitude and direction. The first ball has momentum P =m*v = 2*4 = 8 at 90degrees. The second ball has momentum P = 1*8 = 8 at -90 or 270 degrees. They sum to zero when you perform vector addition.
Explanation: