Answer: A.). Be equal to the time the ball hits the group
Explanation:
Answer:
4.43 kW
Explanation:
Since Intensity I = P/A = E²/2cμ₀ where P = Power, A = Area = 4πr² where r = distance from source = 61 m and E = electric field amplitude = 8.45 V/m.
P = E²A/2cμ₀ = E²4πr²/2cμ₀ = 2πE²r²/cμ₀
= 2π(8.45 V/m)²(61 m)²/3 × 10⁸ m/s × 4π × 10⁻⁷ Tm/A
= 4428.1 W
= 4.4281 kW ≅ 4.43 kW
Answer:
0.036J
Explanation:
Given parameters:
Spring constant , K = 92N/m
Compression = 2.8cm = 0.028m
Unknown:
Potential energy = ?
Solution:
To solve this problem;
P.E =
K e²
K is the spring constant
e is the compression
so;
P.E =
x 92 x 0.028² = 0.036J
Answer:
hope this helps
Explanation:
an object that's less dense than water floats (eg , ball) because the water it displaces weighs more than the object does. If you've ever tried pushing a beach ball underwater , you've felt this principle in action. As we push the ball down , it pushes back up .