1. The unknown is acceleration
2. The givens are the force(28,913N) and the mass(2350kg)
3. The equation is a=f/m where a is acceleration,f is force and m is mass
4.a=28913/2350 a=12.30340426
5. Therefore its acceleration is 12.30m/s²(rounded to nearest hundredth)
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
q = 1156363.6W/m².
To calculate the heat flux per unit area (W/m²) of a sheet made of metal:
q = -k(ΔT/Δx)
q = -k[(T₂ - T₁)/Δx]
Where, k is the thermal conductivity of the metal, ΔT is the temperature difference and Δx is the thick.
With Δx = 11 mm = 11x10⁻³m, T₂ = 350°C and T₁ = 110°C, and k = 53.0 W/m-K:
q = -53.0W/m-K[(110°C - 350°C)/11x10⁻³m
q = 1156363.6W/m²
Answer:
160N/m
Explanation:
According to Hooke's law which states that the extension of an elastic material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically,
F = ke where
F is the applied force
k is the spring constant
e is the extension
From the formula k = F/e
Since the body accelerates when the block is released, F = ma according to Newton's second law of motion.
The spring constant k = ma/e where
m is the mass of the block = 0.4kg
a is the acceleration = 8.0m/s²
e is the extension of the spring = 2.0cm = 0.02m
K = 0.4×8/0.02
K = 3.2/0.02
K = 160N/m
The spring constant of the spring is therefore 160N/m