Magnitude of acceleration = (change in speed) / (time for the change).
Change in speed = (27 - 0) = 27 m/s
Time for the change = 10 s
Magnitude of acceleration = (27 m/s) / (10 s) = 2.7 m/s² .
-Synodic period is the period of celestial bodies observed on the moving planet(mostly earth)
Sideral period is the period comparing to the fixed stars without motion of the earth involved.
(I will explain the second question with an example, so it's easier to understand)
-For Sideral month for example of the moon it cactually complete one revolution in around 27.3 days.
However, since the earth moves, for us it took some more time to see the moon the same as before (fullmoon to fullmoon) again. That make synodic month of the moon to be around 29.5 days.
<span>It is LandSat, a NASA based satelite that records, on a daily basis, multiple reflected wavelengths from the Earth's surface. The satelite measures reflection from both land and ocean upon the Earth. The system is utilised by scientists an policy makers around the world. </span>
Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>