Answer:
1960.32306 kg/s
Explanation:
m = Mass of water = 1 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height from which the water will fall
Potential Energy

One megawatts of power is required
So, flow rate

1960.32306 kg/s is required to produce a megawatt of power
Answer:
The direction the plane would have to fly to compensate for a wind velocity of 62.0 km/h[N] is 4.5° S of W
Explanation:
The given parameters are;
Velocity of Jet = 792 km/h
Direction of jet velocity = West
Velocity of wind = 62.0 km/h
Direction of wind velocity = North
Therefore, the jet has to have a component of 62.0 km/h South of West to compensate for the wind velocity
The direction of the plane, θ° South of West (S of W) to compensate for the wind is given as follows;

Therefore;

The direction the plane would have to fly to compensate for a wind velocity of 62.0 km/h[N] = 4.5° S of W.
initial acceleration of rocket is given as
a = 12 m/s^2
h = 26 m
now we can use kinematics to find its speed



now after this it will be under free fall
so now again using kinematics

at maximum height



total height from the ground = 31.8 + 26 = 57.8 m
Part b)
now after reaching highest height it will fall to ground
So in order to find the speed we can use kinematics again



Part c)
first rocket accelerate to reach height 26 meter and speed becomes 24.98 m/s
now we have



after this it will reach to highest point and final speed becomes zero



now from this it will fall back to ground and reach to final speed 33.67 m/s
now we have



so total time is given as
<em>t = 3.44 + 2.55 + 2.1 = 8.1 s</em>
Answer:
In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, light, ultraviolet, X-rays, and gamma rays.