Since the atoms or molecules in a solid do not translate hence, the structures of solids usually described in terms of the positions of the constituent atoms rather than their motion.
<h3>States of matter</h3>
There are three state of matter which are;
In a solid, atoms or molecules retain their positions and do not translate, hence, the structure of atoms or molecules are most important in determining the structure of a solid.
Also, the fact that the atoms or molecules in a solid can only vibrate or rotate explains why the structures of solids usually described in terms of the positions of the constituent atoms rather than their motion.
Learn more about the states of matter: brainly.com/question/9402776
Answer:
<h3>I don't know what is the answer of your question sorry never mind..</h3>
Explanation:
<h3>And please marks me as brainliest... </h3>
Fluorine has C seven valence electrons.
Valence electrons are the electrons that are found on the outer shell of an atom that are capable of participating in chemical reactions. The easiest way to figure out how many valance electrons Fluorine has would be to look it up in a periodic table and notice that it a group 7 element and therefore has 7 valence electrons.
The other way to tell that Fluorine has 7 valence electrons is to notice that an element with an atomic number of 9 has 9 electrons. The electronic configuration of elements has the first 2 electrons go on the first shell or energy level
, the leaving the next 7 to go to the second shell
which can take up to 8 electrons.
This means that Fluorine has 7 seven valence electrons.
Answer: The answer is 6.78 grams.
Explanation: The equation used for solving this type of problems is:

where,
is the initial amount of radioactive substance, N is the remaining amount and n is the number of half lives.
Number of half lives is calculated on dividing the given time by the half life.
n = time/half life
Time is given as 48.0 hours and the half life is given as 4.536 days. let's make the units same and for this let's convert the half life from days to hours.

= 108.864 hours
So,
= 0.441
Since 5.00 g is the required amount when the radioactive substance is delivered to the scientist, it would be the final amount that is N. We need to calculate the initial amount. Let's plug in the values in the equation:



= 6.78 g
So, 6.78 g of the radioactive substance needs to be ordered.