Answer:
0.4694 moles of CrCl₃
Explanation:
The balanced equation is:
Cr₂O₃(s) + 3CCl₄(l) → 2CrCl₃(s) + 3COCl₂(aq)
The stoichiometry of the equation is how much moles of the substances must react to form the products, and it's represented by the coefficients of the balanced equation. So, 1 mol of Cr₂O₃ must react with 3 moles of CCl₄ to form 2 moles of CrCl₃ and 3 moles of COCl₂.
The stoichiometry calculus must be on a moles basis. The compounds of interest are Cr₂O₃ and CrCl₃. The molar masses of the elements are:
MCr = 52 g/mol
MCl = 35.5 g/mol
MO = 16 g/mol
So, the molar mass of the Cr₂O₃ is = 2x52 + 3x35.5 = 210.5 g/mol.
The number of moles is the mass divided by the molar mass, so:
n = 49.4/210.5 = 0.2347 mol of Cr₂O₃.
For the stoichiometry:
1 mol of Cr₂O₃ ------------------- 2 moles of CrCl₃
0.2347 mol of Cr₂O₃----------- x
By a simple direct three rule:
x = 0.4694 moles of CrCl₃
The the last one, but isn't it c6h12o6?
Answer:
i would say C
Explanation:
You can only make a model of something if the real thing already exists.
Answer: A planet from a rain forest would not survive in a desert home, for the fact they depend on water and as these live from water, without it, this leads to dehydration and with loss of water with plants, nothing is able to survive when it comes to a rain forest plant being in a desert home. Another reason is the high trees and leaves that are providing the plants enough sunlight or shade to grow, it guarantees to help keep the temperature normal. Being in a deserted area would mean that there would be a temperature change, something the plant is not used to. Without that needed shade and avoiding the scorching sun, they will die out from how different the temperature is, and how hot it is.
Explanation: I hope this helped you.