Answer:
D
Explanation:
The greater the mass, the greater the inertia, and vice versa.
Remark: This means that a more massive object has a greater tendency to resist a change in its state of rest or motion.
Answer: 888.45 K or 615.3 °c
Explanation:
According to Gay Lussacs law which states that at constant volume, pressure of an ideal gas is directly proportional to it's absolute temperature.
P/T = Constant
Therefore, P1/T1 = P2/T2
P1 = 6.7 atm
T1= 23°c = 273.15 + 23 = 296.15K
Since P2 is tripled, then,
P2 = 6.7 x 3= 20.1 atm
T2 = (20.1 x 296.15) ÷ 6.7
T2 = 888.45 K
Or in celcius 615.3°c
A car slowing as it reaches a traffic light, because it is the only option with acceleration/ deceleration.
And forces require the mass of the object AND the acceleration.