As v becomes zero at the highest point, i prefer considering different travelling directions so it will become less complicated.
dont forget to add the total time up .
also to master the skills, write down the "uvsat" may help (thats the way i found it easier to handle problems)
Answer:
6.9m/s
Explanation:
Given parameters:
Acceleration of the object = 4m/s²
Distance = from x; 2m to x; 8m
Unknown:
Average velocity = ?
Solution:
From the given parameters, we use the right motion equation to solve the problem.
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance covered
Distance = 8m - 2m = 6m
Initial velocity = 0m/s
The final velocity gives us the average velocity in this problem;
v² = 0² + (2 x 4 x 6) = 48
v = √48 = 6.9m/s
Answer:
1st one is dependent
2nd is independent
3rd is dependent
4th is dependent
Explanation:
independent clauses are sentences that can be on their own and make sense dependent clauses don't make sense on their own
Answer:
r = 1.86 m
Explanation:
Here the force due to wall of the cylinder is towards the axis of the cylinder
This force will act as centripetal force for the people sit inside the chamber
now we will have

now we will have

m = 84.4 kg
v = 3.28 m/s
now we have

now we have

According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.