Because the friction on the surface you are sliding on and the friction of the crate, go against each other. So once you start moving the friction will still be there but you now have the momentum to push past the starting point.
Answer:
Solution:
we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]
Position, velocity and acceleration are all based on the equation of motion.
The equation represents the position. The first derivative gives the velocity and the 2nd derivative gives the acceleration.
x(t)=8sint
x'(t)=8cost
x"(t)=-8sint
now at time t=2pi/3,
position, x(t)=8sin(2pi/3)=4*squart(3)cm.
velocity, x'(t)=8cos(2pi/3)==4cm/s
acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2
so at present the direction is in y-axis.
10+8 = 18
5+2 = 7
18-7 = 11
a) to the right by 11N.
Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m