Photons are particles of electromagnetic radiation.
Answer:
7.2 as used in the equation
We can use the equation for Newton's Law of Gravitation
Fg = (Gm₁m₂)/r²
Where gravitational constant = G = 6.674 x 10⁻¹¹ N · m²/kg²
mass m₁ = 0.145 kg
mass m₂ = 6.8 kg
distance between centers of masses = r = 0.5 m
Substitute these values into...
Fg = (Gm₁m₂)/r²
Fg = ((6.674 x 10⁻¹¹)(0.145)(6.8)) / (0.5)²
Fg = 2.63 x 10⁻¹⁰ N
Therefore, your answer should be <span>2.6 × 10–10</span>
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.
Answer:
The statement "The magnetic field of a magnet comes out of the north pole and goes into the south pole" is imprecise
Explanation:
This is because the zero divergence equation (∇ · B = 0 ) is valid for any magnetic field, even if it is time dependent rather than static. Physically, it means that there are no magnetic charges otherwise we would have ∇ · B ∝ ρmag instead of ∇ · B = 0. Consequently, the magnetic field lines never begin or end anywhere in space; instead they form closed loops or run from infinity to infinity.