Newton's 2nd law says: Force = (mass) x (acceleration) .
I wrote Force and acceleration in bold letters because
they're both vectors ... they have size and direction.
The equation is saying that the Force and the acceleration
are both in the same direction.
Range of a projectile motion is given by
R = v cos θ / g (v sin θ + sqrt(v^2 sin^2 θ + 2gy_0)); where R = 188m, θ = 41°, g = 9.8m/s^2, y_0 = 0.9
188 = v cos 41° / 9.8 (v sin 41° + sqrt(v^2 sin^2 41° + 2 x 9.8 x 0.9)) = 0.07701(0.6561v + sqrt(0.4304 v^2 + 17.64)) = 0.05053v + 0.07701sqrt(0.4304v^2 + 17.64)
0.07701sqrt(0.4304v^2 + 17.64) = 188 - 0.05053v
0.005931(0.4304v^2 + 17.64) = 35344 - 19v + 0.002553v^2
0.002553v^2 + 0.1046 = 35344 - 19v + 0.002553v^2
19v = 35344 - 0.1046 = 35343.8954
v = 35343.8954/19 = 1860 m/s
Answer:
Explanation:
Given
mass m collides elastically with floor and jump to its original height I .e.velocity of rebound is same as the initial velocity
Impulse imparted by steel ball to the ground is given by the change in momentum of steel ball

and impulse is product of average force and time
so we need time to calculate the average force. So, option e is correct