Newtons First Law of Motion:
An object at rest stays at rest and an object in motion<span> stays in </span>motion <span>with the same speed and in the same direction unless acted upon by an unbalanced force.</span>
Therefore, the relationship between force and motion is that it takes force to change the speed or direction of any object in motion.
<span>16.82 x 0.04 = 0.67 rad
I hope I helped if you really need I can explain to you how I got that answer but Thats correct im sorry it took 2 days for me to find this answer but if you or anybody else still needs the answer for this question here it is :) have a fantastic day guys Spring Break is coming up soon :)</span>
Answer:
4. Parabola
Explanation:
The motion of the flight of the grenade is a projectile motion, it's shape is best illustrated using a parabolic diagram.
It's not a circle as the path is not totally round.
It's not an ellipse as the path of motion is not a a completely bounded shape.
Its not a hyperbola as a hyperbola is an open curve with two branches.
Its a parabolic shape because a parabola has just one branch
Answer:
Work out = 28.27 kJ/kg
Explanation:
For R-134a, from the saturated tables at 800 kPa, we get
= 171.82 kJ/kg
Therefore, at saturation pressure 140 kPa, saturation temperature is
= -18.77°C = 254.23 K
At saturation pressure 800 kPa, the saturation temperature is
= 31.31°C = 304.31 K
Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.
Thus,
=
= 171.82 kJ/kg
We know COP of heat pump
COP = 
= 
= 6.076
Therefore, Work out put, W = 
= 171.82 / 6.076
= 28.27 kJ/kg
The first thing we need to do is figure out what equation to use. We will use the following kinematic equation...
Δx = (final velocity + initial velocity) x time / 2
We know that the car accelerates from rest, so initial velocity = 0 m/s
We also know final velocity = 20 m/s and time = 12s
Now we just need to plug everything in.
Δx = (20 x 12)/2 = 120 meters