Answer:
I am on the same one and I think it is C
Step-by-step explanation:
I am not entirely positive but I am leaning towards this one.
Answer:
Part 1) The volume of the ball is 256 cm³
Part 2) The radius of the ball is 3.94 cm
Step-by-step explanation:
Part 1) we know that
The density is equal to divide the mass by the volume
D=m/V
Solve for the volume
The volume is equal to divide the mass by the density
V=m/D
In this problem we have
m=128 g
D=0.5 g/cm³
substitute
V=128/0.5=256 cm³
Part 2) what is the radius of the ball?
we know that
The volume of the sphere (ball) is equal to
we have
assume
substitute and solve for r
Answer:
The length is equal to 12 and the width is equal to 6.
Step-by-step explanation:
In order to find the values here, we start by setting the width equal to x. Now knowing this, we know that the length is twice that long. Therefore, the length would be equal to 2x. Now we can use the perimeter formula to solve the equation.
2L + 2W = P
2(2x) + 2(x) = P
4x + 2x = 36
6x = 36
x = 6
Now with the given value for x, we can tell that the width is 6 and then we multiply it by 2 to get the length value (12).
Answer:
x=133 y=-25
Step-by-step explanation:
I'll do both ways for you. So let's start with Substitution:
With the sub method, you have to set both equations equal to each other by setting them equal to the same variable. Since there is no coefficient in front of both x's in both equations, that variable will be easiest to solve for.
x + 2y = 83 & x + 5y = 8
Solve for x.
x = 83 - 2y & x = 8 - 5y
Once you have solved for x, set each equation equal to one another and solve for y now.
83 - 2y = 8 - 5y
Isolate all variables to one side:
83 = 8 - 3y
Now subtract the 8 to fully isolate the y variable:
75 = -3y
Divide by -3:
-25 = y Now that you have your first variable, plug it into one of the original equations and solve for x.
x + 2(-25) = 83
x - 50 = 83
x = 133
Now for the Elimination method. For this method you need to get rid of a variable by either subtracting/adding each equation together. Again, since you can subtract and x from both equations, you will be left with only the y variable to solve:
Put each equation on top of one another and subtract:
x + 2y = 83
- (x + 5y = 8)
The x's will cancel out:
(x - x) + (2y - 5y) = (83 - 8)
Simplify:
-3y = 75
Solve for y
y = -25
Then, plug y = -25 into one of the original equations:
x + 5(-25) = 8
Solve for x:
x - 125 = 8
x = 133
Hope this helps!
Google it. ('>')...................................................