Answer:
576 joules
Explanation:
From the question we are given the following:
weight = 810 N
radius (r) = 1.6 m
horizontal force (F) = 55 N
time (t) = 4 s
acceleration due to gravity (g) = 9.8 m/s^{2}
K.E = 0.5 x MI x ω^{2}
where MI is the moment of inertia and ω is the angular velocity
MI = 0.5 x m x r^2
mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg
MI = 0.5 x 82.65 x 1.6^{2}
MI = 105.8 kg.m^{2}
angular velocity (ω) = a x t
angular acceleration (a) = torque ÷ MI
where torque = F x r = 55 x 1.6 = 88 N.m
a= 88 ÷ 105.8 = 0.83 rad /s^{2}
therefore
angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s
K.E = 0.5 x MI x ω^{2}
K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules
The pressure will 14. 0 g of co exert in a 3. 5 l container at 75°c is 4.1atm.
Therefore, option A is correct option.
Given,
Mass m = 14g
Volume= 3.5L
Temperature T= 75+273 = 348 K
Molar mass of CO = 28g/mol
Universal gas constant R= 0.082057L
Number of moles in 14 g of CO is
n= mass/ molar mass
= 14/28
= 0.5 mol
As we know that
PV= nRT
P × 3.5 = 0.5 × 0.082057 × 348
P × 3.5 = 14.277
P = 14.277/3.5
P = 4.0794 atm
P = 4.1 atm.
Thus we concluded that the pressure will 14. 0 g of co exert in a 3. 5 l container at 75°c is 4.1atm.
learn more about pressure:
brainly.com/question/22613963
#SPJ4
Answer:
B = 0.157 T
Explanation:
Given that,
Length of the solenoid, l = 8 cm = 0.08 m
Number of turns in the wire, N = 2000
Current, I = 5 A
We need to find the strength of the magnetic field at the center of the solenoid. It is given by the formula as follows :
, N is number of turns per unit length of solenoid.
So,

So, the magnetic field at the center of the solenoid is 0.157 T.