1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
4 years ago
13

5. Why does a properly adjusted head restraint help prevent head and neck injuries to occupants in

Physics
1 answer:
skad [1K]4 years ago
3 0

Answer:

Have you tried google

Explanation:

You might be interested in
What electric force would a stationary 3.8 C charge experience if it were far away from any other charges
MAVERICK [17]

Answer:

The electric force will be  0 N

Explanation:

From the question we are told that

   The magnitude of the charge is  q_1 = 3.8 \ C

   

Generally from Coulombs law the electric force  between two charges is mathematically represented as

         F = \frac{ k  *  q_1 q_2 }{r^2}

Here r is the distance of separation between that two charges.

  Now from the question we are told that the charge is far away from any other charge hence we can say that the distance between the charge and any other charge is  r = \infty

So

       F = \frac{ k  *  3.8  * q_2 }{\infty^2}

=>    F =0 \ N

Hence the electric force will be  0 N

3 0
3 years ago
Please help me,its urgent!!
GREYUIT [131]

Test:

Performing a Litmus Test

Result:

Litmus paper gives the user a general indication of acidity or alkalinity as it correlates to the shade of red or blue that the paper turns.

  • To test the pH of a substance, dip a strip of litmus paper into the solution or use a dropper or pipette to drip a small amount of solution onto the litmus paper.
  • Blue litmus paper can indicate an acid with a pH between 4 and 5 or lower.
  • Red litmus paper can show a base with a pH greater than 8.
  • If a solution has a pH between 5 and 8, it will show little color change on the litmus paper.
  • A base tested with blue litmus paper will not show any color change, nor will an acid tested with red litmus paper register a change in color.
4 0
3 years ago
Which simple machine is NOT correctly matched with an appropriate task for its use?
Tcecarenko [31]
The simple machine that is not correctly matched with  its appropriate task is the inclined plane because there is no such big ramp that is as high as 1 storey building, the appropriate task would be Lifting a heavy box and moving it across a room. and for the pulley : <span>Moving a heavy box up to the second floor of a building.</span>
6 0
3 years ago
A wheel has a constant angular acceleration of 4.5 rad/s2. during a certain 5.0 s interval, it turns through an angle of 128 rad
dalvyx [7]
The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2 
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration 
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1 
w1 = wo + ãt 
w1 - final angular velocity 
wo - initial angular velocity 
18 = 0 + 4.5t t = 4 s
3 0
4 years ago
A voltage V is applied to the primary coil of a step-up transformer with a 3:1 ratio of turns between its primary and secondary
Snezhnost [94]

Explanation:

Let N_p\ and\ N_s are the number of turns in primary and secondary coil of the transformer such that,

\dfrac{N_p}{N_s}=\dfrac{1}{3}

A resistor R connected to the secondary dissipates a power P_s=100\ W

For a transformer, \dfrac{N_s}{N_p}=\dfrac{V_s}{V_p}

V_s=(\dfrac{N_s}{N_p})V_p

V_s=3V_p...............(1)

The power dissipated through the secondary coil is :

P_s=\dfrac{V_s^2}{R}

100\ W=\dfrac{V_s^2}{R}

V_p^2=\dfrac{100R}{9}.............(2)

Let N_p'\ and\ N_s' are the new number of turns in primary and secondary coil of the transformer such that,

\dfrac{N_p'}{N_s'}=\dfrac{1}{24}

New voltage is :

V_s'=(\dfrac{N_s'}{N_p'})V_p'

V_s'=24V_p...............(3)

So, new power dissipated is P_s'

P_s'=\dfrac{V_s'^2}{R}

P_s'=\dfrac{(24V_p)^2}{R}

P_s'=24^2\times \dfrac{(V_p)^2}{R}

P_s'=24^2\times \dfrac{(\dfrac{100R}{9})}{R}

P_s'=6400\ Watts

So, the new power dissipated by the same resistor is 6400 watts. Hence, this is the required solution.

3 0
4 years ago
Other questions:
  • A vector A has components Ax = −4.00 m and Ay = 3.50 m. Find the magnitude (in m) and the direction (in degrees counterclockwise
    6·1 answer
  • Which two energy sources together provide more than 50% of the energy needs of the United States?
    11·1 answer
  • A long solenoid has a diameter of 11.1 cm. When a current i exists in its windings, a uniform magnetic field of magnitude B = 42
    13·1 answer
  • Ultraviolet light of wavelength 3500 Angstrom falls on a potassium surface. The maximum energy of the emitted photoelectrons is
    11·1 answer
  • Flying against the jetstream, a jet travels 6060 mi in 6 hours. Flying with the jetstream, the same jet travels 10,640 mi in 8 h
    5·1 answer
  • FILL IN THE BLANK.<br><br> The __________ of a vector is represented by the length of the arrow.
    10·1 answer
  • *please help fast**15 points*
    8·2 answers
  • Please look at the picture and answer the questions
    6·1 answer
  • A 20 kg box rests on the ground. Round all answers to the hundredths, if necessary. What is the weight of the box?​
    7·2 answers
  • Lunar phases occur when the moon appears to change shape as seen from earth. What causes different phases of the moon?.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!