Answer:
Mass, m = 26.54kg
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
- Fapp is the applied force
- Fg is the force due to gravitation
<u>Given the following data;</u>
Net force, Fnet = 345
Acceleration, a = 3.2m/s²
<u>To find mass;</u>
Fnet = Fapp + Fg
Fnet = ma + mg
Fnet = m(a+g)
m = Fnet/(a+g)
We know that acceleration due to gravity, g = 9.8m/s²
Substituting into the equation, we have;
m = 345/(3.2 + 9.8)
m = 345/13
Mass, m = 26.54kg
The speed of the sound wave in the medium, given the data is 3900 m
<h3>Velocity of a wave </h3>
The velocity of a wave is related to its frequency and wavelength according to the following equation:
Velocity (v) = wavelength (λ) × frequency (f)
v = λf
With the above formula, we can obtain the speed of the sound wave. Details below:
<h3>How to determine speed of the sound wave</h3>
The speed of the wave can be obtained as illustrated below:
- Frequency (f) = 600 Hz
- Wavelength (λ) = 6.5 m
- Velocity (v) =?
v = λf
v = 6.5 × 600
v = 3900 m
Thus, the speed of the sound wave in the medium is 3900 m
Learn more about wave:
brainly.com/question/14630790
#SPJ4
Answer:
Work done = 35467.278 J
Explanation:
Given:
Height of the cone = 4m
radius (r) of the cone = 1.2m
Density of the cone = 600kg/m³
Acceleration due to gravity, g = 9.8 m/s²
Now,
The total mass of the cone (m) = Density of the cone × volume of the cone
Volume of the cone = 
thus,
volume of the cone =
= 6.03 m³
therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg
The center of mass for the cone lies at the
times the total height
thus,
center of mass lies at, h' = 
Now, the work gone (W) against gravity is given as:
W = mgh'
W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J
use the formula
v= u+ at
v is final velocity , u is initial velocity , a is acceleration and t is time
put the values
20 = 0+ a×5
a = 4 m/s²
A star’s death also depends on its mass. The most massive stars
quickly exhaust their fuel supply and explode in core-collapse
supernovae, some of the most energetic explosions in the universe. A
supernova’s radiation can easily (if only briefly) outshine the rest of
its host galaxy. The remnant stellar core will form a neutron star
or a black hole, depending on how much mass remains. If the core
contains between 1.44 and 3 solar masses, that mass will crush into a
volume just 10 to 15 miles wide before a quantum mechanical effect known
as neutron degeneracy pressure prevents total collapse. The
exact upper limit on a neutron star mass isn’t known, but around 3 solar
masses, not even neutron degeneracy pressure can combat gravity’s
inward crush, and the core collapses to form a black hole.