It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
Well when a particle of air is becomes heated it rises, right? So you could write some like you started off close to the earth (aka the troposphere) until you became heated then you started to rise and as you reached higher elevations you cooled down and you were recycled into cool air and you moved back down and became new fresh cool air until the next time you'll become heated and rise again to be recycled into fresh cool new air.
Answer:
12 átomos de oxígeno hay presentes
Explanation:
Basados en la reacción:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
<em>6 moles de agua producen 1 mol de glucosa</em>
<em />
Si reaccionan 12 moleculas de agua, se producirán:
12 moleculas H₂O * (1 mol C₆H₁₂O₆ / 6 mol H₂O) =
2 moléculas de glucosa se producen.
Como cada molécula de glucosa tiene 6 átomos de oxígeno:
2 moléculas C₆H₁₂O₆ * (6 átomos Oxígeno / 1 molécula C₆H₁₂O₆) =
<h3>12 átomos de oxígeno hay presentes</h3>