Answer:
Option C :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
Explanation:
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
Tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
For Example
C₂H₆O₂ Consist of Carbon (C), Hydrogen (H), and Oxygen (O)
Now
Look at the ratio of these three atoms in the compound
C : H : O
2 : 6 : 2
Divide the ratio by two to get simplest ratio
C : H : O
2/2 : 6/2 : 2/2
1 : 3 : 1
So for the empirical formula the simplest ratio of carbon to hydrogen to oxygen is 1:3:1
So the empirical formula will be
Empirical formula of C₂H₆O₂ = CH₃O
So, Option C is correct :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
<u>Answer:</u> The structure of the geometrical isomers are attached below.
<u>Explanation:</u>
Cis- and Trans- isomers are the geometrical isomers which have same chemical formula but different structural formula
According to CIP rule, the groups on the doubly bonded carbon atoms are given priorities based on the the atomic masses of first connected atom.
If the highest priority groups are on the same side, it is known as cis-form and if the highest priority groups are on opposite side, it is known as trans-form.
We are given a chemical compound, which is 2-pentene.
In this the highest priority groups are methyl and ethyl groups.
When the groups are on the same side, it forms cis-form and when the groups are on the opposite side, it forms trans-form
The structure of the geometrical isomers are attached below.
Answer:
40.94 g
Explanation:
Given data:
Mass of NO₂ = ?
Volume = 20.0 L
Pressure = 110.0 Pka
Temperature = 25°C
Solution:
Pressure = 110.0 KPa (110/101 = 1.1 atm)
Temperature = 25°C (25+273 = 298.15 K)
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.1 atm × 20.0 L / 0.0821 atm.L/ mol.K ×298.15 K
n = 22 / 24.5 /mol
n= 0.89 mol
Mass of NO₂:
Mass = number of moles × molar mass
Mass = 0.89 mol × 46 g/mol
Mass = 40.94 g
Answer:
Gas state
Explanation:
Gas particles spread out to fill a container evenly, unlike solids and liquids.
The process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct.