Answer:
1.52 * 10⁵ K
Explanation:
When the temperature of a blackbody radiator increases, the overall radiated energy increases and the peak of the radiation curve moves to shorter wavelengths. When the maximum is evaluated from the Planck radiation formula, the product of the peak wavelength and the temperature is found to be a constant.
By Wien's Law,
λ * T = 2.898 * 10⁻³ mK
∴ T = 2.898 * 10⁻³/λ
Given λ = 19 nm = 19 * 10⁻⁹
T = 2.898 * 10⁻³ / 19 * 10⁻⁹
=1.52 * 10⁵ K
u = 0.077
Explanation:
Work done by friction is
Wf = ∆KE + ∆PE
-umgx = ∆KE,. ∆PE =0 (level ice surface)
-umgx = KEf - KEi = -(1/2)mv^2
Solving for u,
u = v^2/2gx
= (12 m/s)^2/2(9.8 m/s^2)(95 m)
= 0.077
Answer:
initial velocity=12.31 m/s
Final speed= 16.234 m/s
Explanation:
Given Data
height=5.72 m
distance=13.30 m
To Find
Initial Speed=?
Solution
Use the following equation to determine the time of the stone is falling.
d = vi ×t ½ ×9.8 × t²
Where
d = 5.72m and vi = 0 m/s
so
5.72 = ½× 9.8 ×t²
t = √(5.72 ÷ 4.9)
t=1.08 seconds
To determine the initial horizontal velocity use the following equation.
d = v×t
13.30 = v ×1.08
v = 13.30 ÷ 1.08
v=12.31 m/s
To determine stone’s final vertical velocity use the following equation
vf = vi+9.8×t............vi=0 m/s
vf = 9.8×1.08
vf= 10.584 m/s
To determine stone’s final speed use the following equation
Final speed = √[Horizontal velocity²+Final vertical velocity²]
Final speed = √{(12.31 m/s)²+(10.584 m/s)²}
Final speed= 16.234 m/s
Answer:
Zero Acceleration.
Explanation:
If an object is at equilibrium, then the forces are balanced. Balanced is the key word that is used to describe equilibrium situations. Thus, the net force is zero and the acceleration is 0 m/s/s. Objects at equilibrium must have an acceleration of 0 m/s/s.